COMPACT, SENSORLESS VECTOR INVERTER FOR GENERAL-USE VARISPEED-606V7

200V CLASS, THREE-PHASE INPUT : 0.1 TO 7.5kW (0.13 TO 10HP) 200V CLASS, SINGLE-PHASE INPUT: 0.1 TO 3.7kW (0.13 TO 5HP)
400V CLASS, THREE-PHASE INPUT : 0.2 TO 7.5 kW (0.25 TO 10HP)

A Different Breed of Inverter

Delivering the Performance and Functions You Need for Every Type of Application.

Introducing the VS-606V7 inverter, a compact design that is just what you've been waiting for. With enhanced performance and functions, it can handle all types of applications, quickly and easily, around the globe. Upgrade equipment of all types with this new breed of compact inverter.

Handles All Types of Applications

Powerful performance and flexibility mean the V7 can handle every type of application, providing both strong starting torque and stable operation at low speed through Yaskawa's unique sensorless vector control technology. An extensive software library and flash memory with instant backup makes the V7 the ideal drive for demanding customers.

Easier than Ever to Use

Operation and maintenance are simple, both designed for one-touch control. The frequency setting potentiometer, for example, is just "plug-and-play." The cooling fan can be replaced in a flash. And an operator with a copy function is provided for batch management of constant upload/downloads.

Worldwide Recognition
With Yaskawa's unsurpassed quality and global specifications, the V7 is designed to fully comply with international standards, voltages (200/400V) and networks, providing reliability to answer customer trust around the world.

Main Features of the VS-606V7 Inverter

High Starting Torque (> 150\% at 1Hz)

Yaskawa's unique sensorless vector Technology delivers superb torque characteristics.

Braking transistor standard

Delivers high braking power by incorporating a braking resistor (optional).

Improved protection functions

High-speed current limiting suppresses overcurrent trips (250% or more of rated current), giving new meaning to the term, to tripless operation.

- Inrush current suppression circuit is built in.

Internal flash memory for user needs

Special application software easily and quickly installs, making a customized inverter simple and painless.

Wide range of operation methods

Multi-speed step operation (up to 16 -step speed), up/down operation, jog operation, etc.

Extensive Array of Functions

Software library incorporating exceptional drive expertise

- PID control
- Energy-saving control

Extensive selection of handy functions

Slip compensation function, overtorque detection function, speed search function, etc.

Supports diverse input/output specifications

0 to $10 \mathrm{~V}, 4$ to $20 \mathrm{~mA}, 0$ to 20 mA input, pulse train input, multifunction I/O terminals, analog monitor, pulse train monitor, etc.
Logic level of multi-function inputs can be switched (PNP/NPN), providing enhanced flexibility.

"Plug-and-play" operation

The control panel (digital operator) comes with a frequency setting potentiometer as standard. Just hook it up, turn ON the power and you're ready to go.
An optional operator and cable are available for remote operation/monitoring.

Simple maintenance

Simple Operation and Easy Maintenance

The cooling fan is detachable for simple maintenance, and the built-in fan ON/OFF control assures you of long, reliable service.

Simple mounting and wiring

Both main and control circuit terminals are screw-type, assuring simple wiring and high reliability.
DIN rail attachments are available to simplify mounting and detaching.

Simple constant management

- The operator has a copy function for constant upload/download.
A support tool using a PC is also available.

Control of Power Supply High Harmonic Currents

An optional DC reactor can be connected to suppress high harmonic currents. An AC reactor is also available.

Global Specifications

Complies with global standards for world-wide acceptance

Certified by UL/cUL and CE marking. Note: Use a special EMC-compatible noise filter with the inverter to meet the CE marking standards. Contact your Yaskawa representative. For details about a CC-Link model with CE marking, contact your Yaskawa representative.

UL/cUL mark CE mark

Support for worldwide voltages

200 V (Three-phase, single-phase) series
400 V (Three-phase) series

Support for field networks around the world

RS485/422 (MEMOBUS protocol) support standard.
Optional units available for Device Net*, Profibus-DP, and CC-Link
For DeviceNet and CC-Link communications, the Varispeed V7 is available for open-field networks without the need for any additional devices.

[^0]
Display and keypad Description

Function Display LED Description

Switching the Function LEDs

Changing the Constant Data

- Example: Setting the constant n003 (operation reference selection)
 during operation
- - indicates display switching flow while stopping

Monitor (MNTR) Lists

Constan No.	Monitor	Unit	Constant No.	Monitor		Unit
U-01	Frequency reference (FREF)*1	Hz	U-09	Fault history (The last four faults are displayed.)		-
U-02	Output frequency (FOUT)*1	Hz	U-10	Software No. (Four digits of PROM are displayed.)		-
U-03	Output current (IOUT)*1	A	U-11	Output power		kW
U-04	Output voltage (1V unit) Example: 200V	V	U-13*3	Cumulative operation time		$\times 10 \mathrm{H}$
			U-15	Received data error at MEMOBUS communication		
U-05	DC voltage (1V unit) Example: 300 V	V				
			U-16	PID feedback amount	(Max. output ratio)	\%
U-06	Input terminal status	-	U-17	PID input amount		\%
U-07	Output terminal status	-	U-18	PID output amount		\%
U-08	Torque monitor*2	\%	U-19	Frequency reference bias monitor		\%

Fault display method

- Display format

$\square \square \square \square$	4-digit, 7-segment LED
\square	Fault description example: "EFジ" is displayed at EF3 fault. " -- " is displayed when there is no fault. Order of fault up to 4 (1 is the most recent.)

- Switching fault history
*1 The digital operator LED is not lit.
*2 When V/f control is selected,"---." is displayed.
*3 Applicable only for inverters of 5.5 kW and 7.5 kW (200-V and 400-V classes).

Fault history can be viewed by \triangle or ∇ key.
Clearing fault history
Set the constant n001 to " 6 ," then the n001 data returns to the previous value. Or initialize the constant, then n001 returns to the default setting.

[^1]■ Model Designation
$\frac{\mathrm{CIM} R}{\mathrm{~V}} \mathrm{~V} 7 \mathrm{~A} A \operatorname{OP1}$
Inverter
VS-606V7 series

No.	Type	Remarks
A	Standard model	With digital operator (with volume control)
B		Without digital operator (with blank cover)
C		With digital operator (without volume control)
D	CC-Link model	With digital operator (with volume control)
E		Without digital operator (with blank cover)
F		With digital operator (without volume control)
N	DeviceNet model	With digital operator (with volume control)
P		Without digital operator (with blank cover)
M		With digital operator (without volume control)

No.	Specifications
A	Japan domestic standards*
C	European standards

* Conforms to UL/cUL, CE requirements.
- Models

O: Provided

Voltage class	Description		Model	Capacity code to be filled in model					(Max. applicable motor output kW)				
			$\begin{array}{\|c\|} \hline \text { 0P1 } \\ (0.1) \end{array}$	$\begin{aligned} & \text { OP2 } \\ & (0.2) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 0P4 } \\ \text { (0.4) } \end{gathered}$	$\begin{aligned} & \hline \text { 0P7 } \\ & (0.7) \end{aligned}$	$\begin{aligned} & 1 \mathrm{P5} \\ & (1.5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 2P2 } \\ & (2.2) \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 3 \mathrm{PO} 0 \\ (3.0) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 3P7 } \\ (3.7) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { 5P5 } \\ \text { (5.5) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 7 \mathrm{P} 5 \\ (7.5) \\ \hline \end{array}$	
	Digital Operator	Analog Volume											
$\left\|\begin{array}{c} \text { Single-phase } \\ 200 \mathrm{~V} \end{array}\right\|$	Provided	Provided	CIMR-V7AAB	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-
		Not Provided	CIMR-V7CAB										
	Not Provided*	-	CIMR-V7BAB	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	0	-	-
$\left\|\begin{array}{c} \text { Three-phase } \\ 200 \mathrm{~V} \end{array}\right\|$	Provided	Provided	CIMR-V7AA2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
		Not Provided	CIMR-V7CA2										
	Not Provided*	-	CIMR-V7BA2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
$\begin{gathered} \text { Three-phase } \\ 400 \mathrm{~V} \end{gathered}$	Provided	Provided	CIMR-V7AA4	-	\bigcirc								
		Not Provided	CIMR-V7CA4										
	Not Provided*	-	CIMR-V7BA4	-	\bigcirc								

* A blank cover is provided for a VS-606 V7 inverter without a digital operator.

Notes: 1 Models without cooling fin are available.
Contact your YASKAWA representative.
2 Contact your YASKAWA representative for details about CC-Link and DeviceNet models.

■ Capacity Code Designation

(Example of a model with digital operator and analog volume)

Build a sequence to shut OFF the power supply side at thermal trip contact when using a braking resister.

* A housing is required when using the CN2 terminal on the back side of the digital operator. 1 m analog input cable (Order no. WV201) is available for housing on request.
Contact your YASKAWA representative.

Shows the following two kinds of connections (factory setting) :

- Input signals (S1 to S7) are non-voltage contacts

■ Model Description

Type	Terminal		Name	Function (Signal Level)	
	R/L1, S/L2, T/L3		AC Power Supply Input	Main circuit power supply input (Use R/L1 and S/L2 for single-phase power supply inverter. Do not use T/L3 of the models less than 0.75 kW for other usage, such as a junction terminal.)	
	U/T1, V/T2, W/T3		Inverter Output	For inverter output	
	B1, B2		Braking Resistor Connection	For braking resistor connection	
	+2, +1		DC Reactor Connection	Remove the short bar between +2 and +1 when connecting DC reactor (option)	
	+1, -		DC Power Supply Input	For power supply input (+1 : positive electrode; - : negative electrode)*1	
	$\stackrel{\dagger}{\square}$		Grounding	For grounding (Grounding should be conforming to the local grounding code.)	
		S1	Multi-function Input Selection 1	Factory setting: Runs when CLOSED, stops when OPEN.	24VDC, 8 mA photocoupler insulation
		S2	Multi-function Input Selection 2	Factory setting: Runs when CLOSED, stops when OPEN.	
		S3	Multi-function Input Selection 3	Factory setting: "External fault (NO contact)"	
		S4	Multi-function Input Selection 4	Factory setting: "Fault reset"	
		S5	Multi-function Input Selection 5	Factory setting: "Multi-step speed reference 1 "	
		S6	Multi-function Input Selection 6	Factory setting: "Multi-step speed reference 2"	
		S7	Multi-function Input Selection 7	Factory setting: "JOG command"	
		SC	Multi-function Input Selection Common	Common for control signal	
		RP	Speed Reference Pulse Train Input	33 kHz max.	
		FS	Power Supply Terminal for Frequency Setting	+12 V (allowable current: 20 mA max.)	
		FR	Speed Frequency Reference	0 to $+10 \mathrm{~V} \mathrm{DC}(20 \mathrm{k} \Omega)$ or 4 to $20 \mathrm{~mA}(250 \Omega), 0$ to $20 \mathrm{~mA} \mathrm{(250} \mathrm{\Omega)} \mathrm{(resolution} 1 / 1000)$	
		FC	Frequency Reference Common	0V	
		MA	NO Contact Output	Factory setting: "Fault"	Contact capacity*2 $250 \mathrm{VAC}, 1 \mathrm{~A}$ or less $30 \mathrm{VDC}, 1 \mathrm{~A}$ or less
		MB	NO Contact Output		
		MC	Contact Output Common		
		P1	Photocoupler Output 1	Factory setting: "Running"	Photocoupler output: $+48 \mathrm{VDC}, 50 \mathrm{~mA}$ or less
○े		P2	Photocoupler Output 2	Factory setting: "At frequency"	
		PC	Photocoupler Output Common	0V	
	AM		Analog Monitor Output	Factory setting: "Output frequency" 0 to +10 V output (Pulse monitor output available by setting constants. Duty: 30 to 70%)	0 to 10 V 2 mA or less Resolution: 8bits
			Analog Monitor Common	0V	
		R+	Communication Input (+)	For MEMOBUS communication Operation by RS-485 or RS-422 communication is available.	RS-485/422 MEMOBOS protocol 19.2kBPS max.
		R-	Communication Input (-)		
		S+	Communication Output (+)		
		S-	Communication Output (-)		

When replacing the VS-606PC3 with a VS-606V7, a separate attachment will be required. Refer to Attachment for Replacing PC3 Series on page 59.

■ Open Chassis Type (IP20)

Figure 1
4-d

Figure 3

Voltage Class	$\begin{aligned} & \text { Max. Applicable } \\ & \text { Motor Output } \\ & \text { kW (HP) } \\ & \hline \end{aligned}$	InverterModelCIMR-V7AA \square	Figure	Dimension in mm (inches)							Mass kg (lb)
				W	H	D	W1	H1	H2	d	
Threephase 200V	0.1 (0.13)	20P1	1	$\begin{gathered} 68 \\ (2.68) \end{gathered}$	$\begin{gathered} 128 \\ (5.04) \end{gathered}$	76 (2.99)	$\begin{gathered} 56 \\ (2.20) \end{gathered}$	$\begin{gathered} 118 \\ (4.65) \end{gathered}$	$\begin{gathered} 5 \\ (0.20) \end{gathered}$	M4	0.6 (1.32)
	0.2 (0.25)	20P2				76 (2.99)					0.6 (1.32)
	0.4 (0.5)	20P4				108 (4.25)				M4	0.9 (1.98)
	0.75 (1)	20P7				128 (5.04)				M4	1.1 (2.43)
	1.5 (2)	21P5	2	108 (4.25)	$\begin{gathered} 128 \\ (5.04) \end{gathered}$	131 (5.16)	96 (3.78)	$\begin{gathered} 118 \\ (4.65) \end{gathered}$	$\begin{gathered} 5 \\ (0.20) \end{gathered}$	M4	1.4 (3.09)
	2.2 (3)	22P2		108 (4.25)		140 (5.51)	$96(3.78)$				1.5 (3.31)
	3.7 (5)	23P7		140 (5.51)		143 (5.63)	128 (5.04)			M4	2.1 (4.62)
	5.5 (7.5)	25P5	3	$\begin{gathered} 180 \\ (7.08) \\ \hline \end{gathered}$	$\begin{gathered} 260 \\ (10.23) \end{gathered}$	$\begin{gathered} 170 \\ (6.69) \end{gathered}$	$\begin{gathered} 164 \\ (6.46) \end{gathered}$	$\begin{gathered} 244 \\ (9.60) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (0.31) \\ \hline \end{gathered}$	M5	4.6 (10.14)
	7.5 (10)	27P5									4.8 (10.58)
Singlephase 200 V	0.1 (0.13)	B0P1	1	$\begin{gathered} 68 \\ (2.68) \end{gathered}$	$\begin{gathered} 128 \\ (5.04) \end{gathered}$	76 (2.99)	$\begin{gathered} 56 \\ (2.20) \end{gathered}$	$\begin{gathered} 118 \\ (4.65) \end{gathered}$	$\begin{gathered} 5 \\ (0.20) \end{gathered}$	M4	0.6 (1.32)
	0.2 (0.25)	B0P2				76 (2.99)					0.7 (1.54)
	0.4 (0.5)	B0P4				131 (5.16)				M4	1.0 (2.20)
	0.75 (1)	B0P7	2	108 (4.25)	$\begin{gathered} 128 \\ (5.04) \end{gathered}$	140 (5.51)	$96(3.78)$	$\begin{gathered} 118 \\ (4.65) \end{gathered}$	$\begin{gathered} 5 \\ (0.20) \end{gathered}$	M4	1.5 (3.31)
	1.5 (2)	B1P5		108 (4.25)		156 (6.14)	$96(3.78)$				1.5 (3.31)
	2.2 (3)	B2P2		140 (5.51)		163 (6.42)	128 (5.04)			M4	2.2 (4.85)
	3.7 (5)	B3P7		170 (6.69)		180 (7.09)	158 (6.22)				2.9 (6.39)
Threephase 400V	0.2 (0.25)	40P2	2	$\begin{gathered} 108 \\ (4.25) \end{gathered}$	$\begin{gathered} 128 \\ (5.04) \end{gathered}$	92 (3.62)	$\begin{gathered} 96 \\ (3.78) \end{gathered}$	$\begin{gathered} 118 \\ (4.65) \end{gathered}$	$\begin{gathered} 5 \\ (0.20) \end{gathered}$	M4	1.0 (2.20)
	0.4 (0.5)	40P4				110 (4.33)				M4	1.1 (2.43)
	0.75 (1)	40P7				140 (5.51)				M4	1.5 (3.31)
	1.5 (2)	41P5				156 (6.14)					1.5 (3.31)
	2.2 (3)	42P2				156 (6.14)					1.5 (3.31)
	3.0 (4)	43P0		$\begin{gathered} 140 \\ (5.51) \end{gathered}$		$\begin{gathered} 143 \\ (5.63) \end{gathered}$	$\begin{gathered} 128 \\ (5.04) \end{gathered}$			M4	2.1 (4.62)
	3.7 (5)	43P7									2.1 (4.62)
	5.5 (7.5)	45P5	3	$\begin{gathered} 180 \\ (7.08) \end{gathered}$	$\begin{gathered} 260 \\ (10.23) \end{gathered}$	$\begin{gathered} 170 \\ (6.69) \end{gathered}$	$\begin{gathered} 164 \\ (6.46) \end{gathered}$	$\begin{gathered} 244 \\ (9.60) \end{gathered}$	$\begin{gathered} 8 \\ (0.31) \end{gathered}$	M5	4.8 (10.58)
	7.5 (10)	47P5									4.8 (10.58)

■ Enclosed Wall-mounted Type [NEMA1 (Type1)] 0.1 to 3.7 kW (0.13 to 5HP)

Figure 1

Figure 3

Figure 2

Figure 4

Voltage Class	$\begin{aligned} & \hline \text { Max. Applicable } \\ & \text { Motor Output } \\ & \text { kW (HP) } \\ & \hline \end{aligned}$	Inverter	Figure	Dimension in mm (inches)								Mass kg (lb)
		CIMR-VTA \square		W	H	D	W1	H0	H1	H2	D1	
Threephase 200V	0.1 (0.13)	20P1	1	$\begin{gathered} 68 \\ (2.68) \end{gathered}$	$\begin{gathered} 148 \\ (5.83) \end{gathered}$	76 (2.99)	$\begin{gathered} 56 \\ (2.20) \end{gathered}$	$\begin{gathered} 128 \\ (5.04) \end{gathered}$	$\begin{gathered} 118 \\ (4.65) \end{gathered}$	$\begin{gathered} 5 \\ (0.20) \end{gathered}$	$\begin{array}{\|c} 10 \\ (0.39) \end{array}$	0.7 (1.54)
	0.2 (0.25)	20P2				76 (2.99)						0.7 (1.54)
	0.4 (0.5)	20P4				108 (4.25)					42 (1.65)	1.0 (2.20)
	0.75 (1)	20P7				128 (5.04)					62 (2.44)	1.2 (2.65)
	1.5 (2)	21P5	2	108 (4.25)	$\begin{gathered} 148 \\ (5.83) \end{gathered}$	131 (5.16)	96 (3.78)	$\begin{gathered} 128 \\ (5.04) \end{gathered}$	$\begin{gathered} 118 \\ (4.65) \end{gathered}$	$\begin{gathered} 5 \\ (0.20) \end{gathered}$	$\begin{gathered} 64 \\ (2.52) \end{gathered}$	1.6 (3.53)
	2.2 (3)	22P2		108 (4.25)		140 (5.51)	$96(3.78)$					1.7 (3.75)
	3.7 (5)	23P7	3	140 (5.51)		143 (5.63)	128 (5.04)				71 (2.80)	2.4 (5.29)
Singlephase 200V	0.1 (0.13)	B0P1	1	$\begin{gathered} 68 \\ (2.68) \end{gathered}$	$\begin{gathered} 148 \\ (5.83) \end{gathered}$	76 (2.99)	$\begin{gathered} 56 \\ (2.20) \end{gathered}$	$\begin{gathered} 128 \\ (5.04) \end{gathered}$	$\begin{gathered} 118 \\ (4.65) \end{gathered}$	$\begin{gathered} 5 \\ (0.20) \end{gathered}$	$\begin{gathered} 10 \\ (0.39) \\ \hline \end{gathered}$	0.7 (1.54)
	0.2 (0.25)	B0P2				76 (2.99)						0.8 (1.76)
	0.4 (0.5)	B0P4				131 (5.16)					42 (1.65)	1.1 (2.43)
	0.75 (1)	B0P7	2	108 (4.25)	$\begin{gathered} 148 \\ (5.83) \end{gathered}$	140 (5.51)	96 (3.78)	$\begin{gathered} 128 \\ (5.04) \end{gathered}$	$\begin{gathered} 118 \\ (4.65) \end{gathered}$	$\begin{gathered} 5 \\ (0.20) \end{gathered}$	$\begin{gathered} 64 \\ (2.52) \end{gathered}$	1.7 (3.75)
	1.5 (2)	B1P5		108 (4.25)		156 (6.14)	96 (3.78)					1.7 (3.75)
	2.2 (3)	B2P2	3	140 (5.51)		163 (6.42)	128 (5.04)				$\begin{gathered} 71 \\ (2.80) \end{gathered}$	2.5 (5.51)
	3.7 (5)	B3P7	4	170 (6.69)		180 (7.09)	158 (6.22)					3.4 (7.50)
Threephase 400 V	0.2 (0.25)	40P2	2	$\begin{gathered} 108 \\ (4.25) \end{gathered}$	$\begin{gathered} 148 \\ (5.83) \end{gathered}$	92 (3.62)	$\begin{gathered} 96 \\ (3.78) \end{gathered}$	$\begin{gathered} 128 \\ (5.04) \end{gathered}$	$\begin{gathered} 118 \\ (4.65) \end{gathered}$	$\begin{gathered} 5 \\ (0.20) \end{gathered}$	16 (0.63)	1.2 (2.65)
	0.4 (0.5)	40P4				110 (4.33)					34 (1.34)	1.2 (2.65)
	0.75 (1)	40P7				140 (5.51)					$\begin{gathered} 64 \\ (2.52) \end{gathered}$	1.7 (3.75)
	1.5 (2)	41P5				156 (6.14)						1.7 (3.75)
	2.2 (3)	42P2				156 (6.14)						1.7 (3.75)
	3.0 (4)	43P0	3	$\begin{gathered} 140 \\ (5.51) \\ \hline \end{gathered}$		$\begin{gathered} 143 \\ (5.63) \\ \hline \end{gathered}$	$\begin{gathered} 128 \\ (5.04) \\ \hline \end{gathered}$				$\begin{gathered} 71 \\ (2.80) \\ \hline \end{gathered}$	2.4 (5.29)
	3.7 (5)	43P7										2.4 (5.29)

Note: Enclosed wall-mounted inverters with a motor output of 3.7 kW or less are open-chassis inverters that have been modified with NEMA1 kits. Contact your Yaskawa representative for a NEMA1 kit.

Enclosed Wall-mounted Type [NEMA1 (Type1)] 5.5/7.5kW (7.5/10HP)

Voltage Class	$\begin{array}{\|c\|} \hline \text { Max. Applicable } \\ \text { Motor Output } \\ \text { kW (HP) } \\ \hline \end{array}$	Inverter Model CIMR-V7AA	Figure	Dimensions in mm (inches)							Mass kg (lb)
				W	H	D	W1	H1	H2	D1	
200V	5.5 (7.5)	25P5	5	180	260	170	164	244	8	65	4.6 (10.14)
(Three-phase)	7.5 (10)	27P5		(7.09)	(10.24)	(6.70)	(6.46)	(9.61)	(0.31)	(2.56)	4.8 (10.58)
400V	5.5 (7.5)	45P5	5	$\begin{gathered} 180 \\ (7.09) \end{gathered}$	$\begin{gathered} 260 \\ (10.24) \end{gathered}$	$\begin{gathered} 170 \\ (6.70) \end{gathered}$	$\begin{gathered} 164 \\ (6.46) \end{gathered}$	$\begin{gathered} 244 \\ (9.61) \end{gathered}$	$\begin{gathered} 8 \\ (0.31) \end{gathered}$	$\begin{gathered} 65 \\ (2.56) \end{gathered}$	4.8 (10.58)
(Three-phase)	7.5 (10)	47P5									4.8 (10.58)

Note: To use $5.5 / 7.5 \mathrm{~kW}$ enclosed wall-mounted type inverters as open chassis type, remove the top and the bottom covers.

Figure 5

INVERTER HEAT LOSS

When mounting the inverter inside the panel, or installing more than one inverter, consider each inverter heat loss, and arrange enough installation space to dissipate the heat.

Three-phase 200V Class

Model CIMR-V7AA \square		20P1	20P2	20P4	20P7	21P5	22P2	23P7	25P5	27P5
Inverter Capacity kVA		0.3	0.6	1.1	1.9	3.0	4.2	6.7	9.5	13
Rated Current A		0.8	1.6	3	5	8	11	17.5	25	33
	Fin	3.7	7.7	15.8	28.4	53.7	60.4	96.7	170.4	219.2
	Inside Unit	9.3	10.3	12.3	16.7	19.1	34.4	52.4	79.4	98.9
	Total Heat Loss	13.0	18.0	28.1	45.1	72.8	94.8	149.1	249.8	318.1
Fin Cooling		Self cooled			Forced fan cooled					

Single-phase 200V Class

Model CIMR-V7AA \square		B0P1	B0P2	B0P4	B0P7	B1P5	B2P2	B3P7
Inverter Capacity kVA		0.3	0.6	1.1	1.9	3.0	4.2	6.7
Rated Current		0.8	1.6	3	5	8	11	17.5
	Fin	3.7	7.7	15.8	28.4	53.7	64.5	98.2
	Inside Unit	10.4	12.3	16.1	23.0	29.1	49.1	78.2
	Total Heat Loss	14.1	20.0	31.9	51.4	82.8	113.6	176.4
Fin Cooling			If coole			orced f	cooled	

Three-phase 400V Class

Model CIMR-V7AA \square		40P1	40P2	40P4	40P7	41P5	42P2	43P7	45P5	47P5
Inverter Capacity kVA		0.9	1.4	2.6	3.7	4.2	5.5	7.0	11	14
Rated Current A		1.2	1.8	3.4	4.8	5.5	7.2	8.6	14.8	18
	Fin	9.4	15.1	30.3	45.8	50.5	58.2	73.4	168.8	209.6
	Inside Unit	13.7	15.0	24.6	29.9	32.5	37.6	44.5	87.7	99.3
	Total Heat Loss	23.1	30.1	54.9	75.7	83.0	95.8	117.9	256.5	308.9
Fin Cooling			elf coole				Forced f	cool		

Relation between new constants and version of VS-606V7 software
\#1: Available in version VSP010028 or later. (3.7kW max.) \#2: Available in version VSP010032 or later. (3.7kW max.) \#3: Available in version VSP010106 or later. (5.5 kW min.)

How to read this list

- Constants not described in this list are not displayed in the digital operator
- Setting constants vary in accordance with password setting (n001). The frequency reference FREF can be changed regardless of the n001 settings
- Constants displayed in \square can be set and changed during operation.

Primary Function (Constant n001 to n049)

Function	Constant No. n \square	Function Name	Description			Setting Range	Setting Unit	Factory Setting	Ref. Page
Selecting Constant Group Initializing	001	Password	```0 : n001 read and set, n002 to n179 read only (FREF of digital operator can be set) 1 : n001 to n049 read and set 2 : n001 to n079 read and set 3 : n001 to n119 read and set \(4:\) n001 to n179 read and set \(5: \mathrm{n} 001\) to n179 read and set (Run command can be received in Program mode.) 6 : Fault history clear 8 : Initialization-reset (multi-function terminal to initial setting) 9:3-wire initialization-reset```			0 to 6, 8, 9	1	1	25
Selecting Control Mode	002	Control mode selection	0 : V/f control 1 : Vector control			0,1	1	0*1	24
Selecting Operation Mode	003	Run command selection	0 : Digital operat 1 : Control circuit 2 : MEMOBUS 3 : Communicati	or terminal Communicati on unit (Option)		0 to 3	1	0	
	004	Frequency reference selection	0 : Volume 1 : Frequency Re (n024) 2 : Control circuit (0 to 10 V) 3 : Control circuit (4 to 20 mA) 4 : Control circuit (0 to 20 mA)	ference 1 t terminal terminal t terminal	5: Pulse train 6 : MEMOBUS Communication (register No. 0002H) 7 : Operator circuit terminal (0 to 10V) 8 : Operator circuit terminal (4 to 20 mA) 9 : Communication unit (Option)	0 to 9	1	0*2	25
Selecting Stopping Method	005	Selecting Stopping Method	0 : Deceleration 1 : Coast to a sto	to stop		0,1	1	0	31
Reverse Run Prohibited	006	Selecting reverse run prohibited	0 : Reverse run e 1 : Reverse run d	nabled isabled		0,1	1	0	26
Selecting Digital Operator Key Function	007	Stop key function	0 : Stop key is always effective 1 : Stop key is effective when operated from digital operator			0, 1	1	0	31
	008	Selecting frequency reference in local mode	0 : Volume 1 : Frequency reference $1(\mathrm{n} 024)$			0,1	1	0*2	-
	009	Frequency reference setting method from digital operator	0 : Enter key used 1 : Enter key not used			0,1	1	0	-
	010	Detecting fault contact of digital operator	0 : No fault contact 1 : Fault contact detected			0,1	1	0	-
Setting V/f Pattern	011	Max. output frequency	 When V/f pattern is a straight line, set n014 and n same value. In this case, n015 is disregarded.			$\begin{gathered} \hline 50.0 \text { to } \\ 400.0 \mathrm{~Hz} \\ \hline \end{gathered}$	0.1 Hz	60.0 Hz	$\begin{aligned} & 24 \\ & 34 \\ & \hline \end{aligned}$
	012	Max. voltage				$\begin{gathered} 0.1 \text { to } \\ 255.0 V^{* 2} \end{gathered}$	0.1 V	$200.0 \mathrm{~V}^{* 3}$	$\begin{aligned} & 24 \\ & 34 \end{aligned}$
	013	Max. voltage output frequency (base frequency)				$\begin{gathered} 0.2 \text { to } \\ 400.0 \mathrm{~Hz} \end{gathered}$	0.1 Hz	60.0 Hz	$\begin{aligned} & 24 \\ & 34 \end{aligned}$
	014	Mid. output frequency				$\begin{gathered} 0.1 \text { to } \\ 399.9 \mathrm{~Hz} \end{gathered}$	0.1 Hz	$\begin{gathered} 1.5 \mathrm{~Hz} \\ (3.0 \mathrm{~Hz}) \end{gathered}$	34
	015	Mid. output frequency voltage				$\begin{gathered} 0.1 \text { to } \\ 255.0 V^{* 2} \end{gathered}$	0.1 V	$\begin{aligned} & 12.0 V^{* 3} \\ & (1.0 \mathrm{~Hz}) \end{aligned}$	34
	016	Min. output frequency				$\begin{gathered} 0.1 \text { to } \\ 10.0 \mathrm{~Hz} \end{gathered}$	0.1 Hz	$\begin{gathered} 1.5 \mathrm{~Hz} \\ (1.0 \mathrm{~Hz}) \end{gathered}$	34
	017	Min. output frequency voltage				$\begin{gathered} 0.1 \text { to } \\ 50.0 \mathrm{~V}^{*} 2 \end{gathered}$	0.1 V	$\begin{gathered} 12.0 \mathrm{~V}^{* 3} \\ (4.3 \mathrm{~V}) \\ \hline \end{gathered}$	34
Selecting Acceleration/ Deceleration Time (Cont'd)	018	Selecting setting unit of accel./decel. time	Selecting setting unit of accel./decel. time			0, 1	1	0	-
			Constant n018	Setting unit	Setting range				
			0	0.1s	$\begin{aligned} & 0.00 \text { to } 999.9 \text { s (less than } 1000 \mathrm{~s} \text {) } \\ & 1000 \text { to } 6000 \text { s (more than } 1000 \mathrm{~s} \text {) } \end{aligned}$				
			1	0.01 s	0.00 to 99.99 s (less than 100 s) 100.0 to 600.0 s (more than 100 s)				

Note: Factory setting values in parentheses are those in vector control mode.
*1 The set value is not changed by constant initialization.
*2 The factory setting of the model with operator without volume (JVOP-146) is " 1 ." When initialized, turned to " 0 ."
$* 3$ For 400 V class inverter, the upper limit of voltage setting range and the setting value before shipment are twice that of 200 V class.

Relation between new constants and version of VS-606V7 software
\#1: Available in version VSP010028 or later. (3.7kW max.) \#2: Available in version VSP010032 or later. (3.7kW max.) \#3: Available in version VSP010106 or later. (5.5 kW min.)

How to read this list

- Constants not described in this list are not displayed in the digital operator
- Setting constants vary in accordance with password setting (n001). The frequency reference

FREF can be changed regardless of the n001 settings.

- Constants displayed in \square can be set and changed during operation.

Primary Function (Constant n001 to n049) (cont'd)

Function	Constant No. n \square	Function Name	Description	Setting Range	Setting Unit	Factory Setting	Ref. Page
Selecting Acceleration/ Deceleration Time	019	Acceleration time 1	Sets acceleration time in the unit selected with n018 when frequency reference changes from 0 to 100%.	$\begin{gathered} \hline 0.00 \text { to } \\ 6000 \mathrm{~s} \end{gathered}$	Unit selected with n018	10.0s	2428
	020	Deceleration time 1	Sets deceleration time in the unit selected with n018 when frequency reference changes from 100 to 0%.	$\begin{aligned} & 0.00 \text { to } \\ & 6000 \mathrm{~s} \end{aligned}$		10.0s	
	021	Acceleration time 2	Effective when acceleration time 2 is selected at multi-function contact input selection. Setting is the same as n019.	$\begin{gathered} 0.00 \text { to } \\ 6000 \mathrm{~s} \end{gathered}$		10.0s	
	022	Deceleration time 2	Effective when deceleration time 2 is selected at multi-function contact input selection. Setting is the same as n020.	$\begin{gathered} 0.00 \text { to } \\ 6000 \mathrm{~s} \\ \hline \end{gathered}$		10.0s	
Selecting S-curve	023	S-curve selection	$0: S$-curve not provided $2: 0.5 \mathrm{~s}$ $1: 0.2 \mathrm{~s}$ $3: 1.0 \mathrm{~s}$	0 to 3	1	0	28
Frequency Reference (FREF)	024	Frequency reference 1 (Master speed frequency reference)	Sets master speed frequency reference. Setting is the same as simple operation lamp FREF).	$\begin{gathered} 0.00 \text { to } \\ 400.0 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 0.01 \mathrm{~Hz} \\ \text { (less } \\ \text { than } \\ 100 \mathrm{~Hz} \text {) } \\ \\ 0.1 \mathrm{~Hz} \\ (\text { more } \\ \text { than } \\ 100 \mathrm{~Hz} \text {) } \end{gathered}$	6.00 Hz	26
	025	Frequency reference 2	Sets second frequency reference. It is effective when multi-step speed reference 1 is selected in multi-function contact input.			0.00 Hz	
	026	Frequency reference 3	Sets third frequency reference. It is effective when multi-step speed reference 2 is selected in multi-function contact input.				
	027	Frequency reference 4	Sets fourth frequency reference. It is effective when multi-step speed references 1 and 2 are selected in multi-function contact input.				
	028	Frequency reference 5	Sets fifth frequency reference. It is effective when multi-step speed reference 3 is selected in multi-function contact input.				
	029	Frequency reference 6	Sets sixth frequency reference. It is effective when multi-step speed references 1 and 3 are selected in multi-function contact input.				
	030	Frequency reference 7	Sets seventh frequency reference. It is effective when multi-step speed references 2 and 3 are selected in multi-function contact input.				
	031	Frequency reference 8	Sets eighth frequency reference. It is effective when multi-step speed references 1,2 , and 3 are selected in multi-function				
	032	Jog frequency	Sets jog frequency. It is effective when jog frequency is selected in multi-function contact input.			6.00 Hz	27
Frequency Reference Limit	033	Frequency reference upper limit	Sets upper limit of frequency reference in units of 1%. Max. output frequency (n 011) is 100%.	0 to 110\%	1\%	100\%	28
	034	Frequency reference lower limit	Sets lower limit of frequency reference in units of 1%. Max. output frequency (n011) is 100%.	0 to 110\%	1\%	-	
	035	Selecting setting/ displaying unit of frequency reference	```0:0.01Hz}\mathrm{ for less than }100\textrm{Hz},0.1\textrm{Hz}\mathrm{ for }100\textrm{Hz}\mathrm{ or more. 1:0.1% 2 to 39: Set the number of motor poles for unit of min}\mp@subsup{\textrm{mi}}{}{-1}\mathrm{ (o to }9999\mathrm{ displayed). 40 to 3999: Custom units.```	0 to 3999	1	0	-
Motor Protection by Electric Thermal	036	Motor rated current	Sets motor rated current of the motor nameplate. It is the standard current for motor electro-thermal protection.	0 to 150% of inverter rated output current	0.1A	*	$\begin{aligned} & 25 \\ & 36 \end{aligned}$
	037	Electronic thermal motor protection selection	0 : Standard motor 1 : Inverter motor 2 : No protection	0 to 2	-	0	36
	038	Electronic thermal motor protection time constant setting	Sets constant for motor protection. For standard and inverter motors (standard rating), 8 min ., for others (short period rating), 5 min .	1 to 60 min	1 min	8 min	
Selecting Cooling Fan Operation	039	Selecting cooling fan operation	1 : Operates with power supply ON 0 : ON/OFF control (ON while running, OFF when stopped. ON for one minute after stopping.)	0.1	-	0	-
Selecting Direction for Rotation	040	Selecting direction for motor rotation	Direction of rotation as viewed from load side when running forward. 0 : Counter clockwise (CCW) 1: Clockwise (CW)	0,1	1	0	-
Adjusting Acceleration/ Deceleration Time	041	Acceleration time 3	Sets acceleration time in the unit selected with n 018 when frequency reference changes from 0 to 100%.	$\begin{gathered} 0.00 \text { to } \\ 6000 \mathrm{~s} \end{gathered}$	$\begin{gathered} \text { Unit } \\ \text { selected } \\ \text { with } \\ \text { n018 } \end{gathered}$	10.0s	-
	042	Deceleration time 3	Sets deceleration time in the unit selected with n018 when frequency reference changes from 100 to 0%.	$\begin{aligned} & 0.00 \text { to } \\ & 6000 \mathrm{~s} \end{aligned}$		10.0s	-
	043	Acceleration time 4	Sets acceleration time in the unit selected with n 018 when frequency reference changes from 0 to 100%.	$\begin{gathered} 0.00 \text { to } \\ 6000 \mathrm{~s} \end{gathered}$		10.0s	-
	044	Deceleration time 4	Sets deceleration time in the unit selected with n018 when frequency reference changes from 100 to 0%.	$\begin{gathered} 0.00 \text { to } \\ 6000 \mathrm{~s} \end{gathered}$		10.0s	-

* Factory setting values are different according to inverter capacity (kVA).

Secondary Function (Constant n050 to n079)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Function \& Constant No. n \(\qquad\) \& Function Name \& Description \& Setting Range \& Setting Unit \& Factory Setting \& Ref. Page \\
\hline \multirow{5}{*}{UP/DOWN command 2} \& \[
\begin{gathered}
\text { \#1, \#3 } \\
045
\end{gathered}
\] \& Frequency reference bias step amount \& - \& \[
\begin{gathered}
0.00 \mathrm{to} \\
99.99 \mathrm{~Hz} \\
\hline
\end{gathered}
\] \& 0.01 Hz \& 0.00 Hz \& - \\
\hline \& \[
\begin{aligned}
\& \text { \#1, \#3 } \\
\& 046
\end{aligned}
\] \& Frequency reference bias accel/decel rate \& - \& 0, 1 \& - \& 0 \& - \\
\hline \& \[
\begin{gathered}
\text { \#1, \#3 } \\
047
\end{gathered}
\] \& Frequency reference bias operation mode selection \& - \& 0, 1 \& - \& 0 \& - \\
\hline \& \[
\begin{gathered}
\# 1, \# 3 \\
048
\end{gathered}
\] \& Frequency reference bias value \& - \& \[
\begin{array}{|c|}
\hline-99.9 \text { to } \\
100.0 \% \\
(\mathrm{n} 011 / 100 \%) \\
\hline
\end{array}
\] \& 0.1 \% \& 0.0 \% \& - \\
\hline \& \[
\begin{gathered}
\# 1, \# 3 \\
049
\end{gathered}
\] \& Analog frequency reference fluctuation limit level \& - \& \[
\begin{array}{|c|}
\hline 0.1 \text { to } \\
100.0 \% \\
(\mathrm{n} 011 / 100 \%) \\
\hline
\end{array}
\] \& 0.1 \% \& 1.0 \% \& - \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
Selecting \\
Sequence \\
Input \\
Functions
\end{tabular}} \& 050 \& Multi-function input selection 1 (Terminal S1) \& \& 1 to 27 \& 1 \& 1 \& \[
\begin{aligned}
\& 26 \\
\& 27 \\
\& 29 \\
\& 30
\end{aligned}
\] \\
\hline \& 051 \& Multi-function input selection 2 (Terminal S2) \& Set items are same as n050 \& 1 to 27 \& 1 \& 2 \& 32 \\
\hline \& 052 \& Multi-function input selection 3 (Terminal S3) \& 0 : FWD/REV run command (3-wire sequence) Other set items are same as n050 \& 0 to 27 \& 1 \& 3 \& \\
\hline \& 053 \& Multi-function input selection 4 (Terminal S4) \& Set items are same as n050 \& 1 to 27 \& 1 \& 5 \& \\
\hline \& 054 \& Multi-function input selection 5 (Terminal S5) \& Set items are same as n050. \& 1 to 27 \& 1 \& 6 \& \\
\hline \& 055 \& Multi-function input selection 6 (Terminal S6) \& Set items are same as n050. \& 1 to 27 \& 1 \& 7 \& \\
\hline \& 056 \& Multi-function input selection 7 (Terminal S7) \& \begin{tabular}{l}
Set items are same as 050 . \\
34 : UP/DOWN command (Terminal S6/S7 is UP command/D0WN command and the setting of n055 is invalid) \\
35 : Loop test (MEMOBUS) \\
36 : UP/DOWN command 2
\end{tabular} \& \[
\begin{aligned}
\& 1 \text { to } 27, \\
\& 34 \text { to } 36
\end{aligned}
\] \& 1 \& 10 \& \\
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Selecting \\
Sequence \\
Output \\
Functions
\end{tabular}} \& 057 \& Multi-function output selection 1 (Contact output terminal MA-MB-MC) \& \begin{tabular}{ll}
\(0:\) Fault \& \(10:\) Minor fault (alarm displays) \\
\(1:\) Running \& \(11:\) During baseblock \\
\(2:\) Speed agree \& \(12:\) Operation mode \\
\(3:\) Zero speed \& \(13:\) Inverter operation ready \\
\(4:\) Frequency detection 1 \& \(14:\) During fault retry \\
(Output frequency \& \(15:\) Low voltage detecting
\end{tabular} \& 0 to 21 \& 1 \& 0 \& \\
\hline \& 058

059 \& \begin{tabular}{l}
Multi-function output selection 2 (Photocoupler output terminal P1-C)

Multi-function output selection 3 (Photocoupler output terminal P2-C)

 \&

Custom frequency detection) \& $16:$ In REV running

$5:$ Frequency detection 2 \& $17:$ Speed searching

(Output frequency \leqq \& $18:$ Output from communication

Custom frequency detection) \& $19:$ PID feedback loss

$6:$ Overtorque detection \& $20:$ Operation when frequency reference

(NO contact output) \& is missing

7 : Overtorque detection \& $21:$ Inverter overheating pre-alarm

(NC contact output) \& $(\mathrm{OH} 3)$

8 : Undertorque detection \&

(NO contact output) \&

9 : Undertorque detection \&

(NC contact output) \&
\end{tabular} \& 0 to 21

0 to 21 \& 1

1 \& 1

2 \& 33

\hline \multirow{3}{*}{| Selecting |
| :--- |
| Frequency |
| Reference |
| Functions |} \& 060 \& Analog frequency reference gain \& Sets internal reference level in units of 1% when frequency reference voltage (current) is $10 \mathrm{~V}(20 \mathrm{~mA})$. Max. output frequency (n 011) is 100%. \& 0 to 225\% \& 1\% \& 100\% \& 27

\hline \& 061 \& Analog frequency reference bias \& Sets internal reference level in units of 1% when frequency reference voltage (current) is $0 \mathrm{~V}(4 \mathrm{~mA}$ or 0 mA$)$. Max. output frequency (n 011) is 100%. \& $$
\begin{gathered}
-100 \text { to } \\
100 \%
\end{gathered}
$$ \& 1\% \& 0\% \& 27

\hline \& 062 \& Filter time constant for analog frequency reference constant \& Sets filter time constant for analog input primary lag. (to avoid noise) \& $$
\begin{gathered}
0.00 \text { to } \\
2.00 \mathrm{~s}
\end{gathered}
$$ \& 0.01 s \& 0.10s \& -

\hline
\end{tabular}

Relation between new constants and version of VS-606V7 software
\#1: Available in version VSP010028 or later. (3.7kW max.) \#2: Available in version VSP010032 or later. (3.7 kW max.) \#3: Available in version VSP010106 or later. (5.5 kW min.)

How to read this list

- Constants not described in this list are not displayed in the digital operator.
- Setting constants vary in accordance with password setting (n001). The frequency reference FREF can be changed regardless of the n001 settings.
- Constants displayed in \square can be set and changed during operation.

Secondary Function (Constant n050 to n079) (cont'd)

Function	Constant No. n \square	Function Name	Description	Setting Range	Setting Unit	Factory Setting	Ref. Page
MECHATROLINK Communications	$063^{\# 2}$	Watchdog error operation selection (For SI-T/V7)	0: Coast to a stop 1: Deceleration to a stop using Deceleration Time 1 in n020. 2: Deceleration to a stop using Deceleration Time 2 in n022. 3: Continuous operation (Alarm) 4: Continuous operation (Alarm, no fault)	0 to 4	-	0	-
Selecting Frequency Reference Functions	064	Operation when frequency reference is missing	0 : Stop 1 : Operation continued at 80% speed of frequency reference before it missed.	0,1	1	0	-
Selecting Analog Monitor Functions	065	Monitor output type	0 : Analog monitor output (0 to +10 VDC 2 mA max.) 1 : Pulse monitor output (12VDC -20mA max. 30 to 70% duty)	0,1	1	0	-
	066	Multi-function analog output (terminal AM-AC)	0 : Output frequency (10V/Max. frequency n011) 1 : Output current ($10 \mathrm{~V} /$ Inverter rated current) 2 : Main circuit DC voltage [10V/400VDC (800VDC for 400 V class)] 3 : Torque monitor ($10 \mathrm{~V} /$ motor rated torque) 4 : Output power ($10 \mathrm{~V} /$ /inverter output kW) 5 : Output voltage reference [10V/200VAC (400 VAC for 400 V class)] 6 : Frequency reference monitor ($10 \mathrm{~V} / \mathrm{Max}$. output frequency n011) Note: Valid when $\mathrm{n} 065=0$ (analog output monitor) selected.	0 to 6	1	0	30
	067	Analog monitor gain	Adjusts output voltage level of analog monitor. (ex.) when 3 V is 100% level, sets as n067 $=0.30$	$\begin{gathered} 0.00 \text { to } \\ 2.00 \end{gathered}$	0.01	1.00	31
Selecting Frequency Reference Functions (Operator Side Input)	068	Analog frequency reference gain (CN2 terminal VIN)	Multiplies input frequency reference by the gain set at this constant. 100% is 1.00 .	$\begin{gathered} -255 \text { to } \\ 255 \% \end{gathered}$	1\%	100\%	-
	069	Analog frequency reference bias (CN2 terminal VIN)	Adds the bias set at this constant to input frequency reference. Max. output frequency (n011) is 100%	$\begin{gathered} -100 \text { to } \\ 100 \% \end{gathered}$	1\%	0\%	-
	070	Filter time constant for analog frequency reference (CN2 terminal VIN)	Sets filter time constant for analog input primary lag. (to avoid noise)	$\begin{gathered} 0.00 \text { to } \\ 2.00 \mathrm{~s} \end{gathered}$	0.01 s	0.10s	-
	071	Analog frequency reference gain (CN2 terminal IIN)	Multiplies input frequency reference by gain set by this constant. 100% is 1.00 .	$\begin{gathered} -255 \text { to } \\ 255 \% \end{gathered}$	1\%	100\%	-
	072	Analog frequency reference bias (CN2 terminal IIN)	Adds the bias set at this constant to input frequency reference. Max. output frequency (n011) is 100%	$\begin{gathered} -100 \text { to } \\ 100 \% \end{gathered}$	1\%	0\%	-
	073	Filter time constant for analog frequency reference (CN2 terminal IIN)	Sets filter time constant for analog input primary lag. (to avoid noise)	$\begin{gathered} 0.00 \text { to } \\ 2.00 \mathrm{~s} \end{gathered}$	0.01 s	0.10s	-
Selecting Pulse Train Frequency Reference Functions	074	Pulse-train frequency reference gain	Sets internal reference level in units of 1% when pulse-train input frequency is that set at pulse-train input scaling (n149). Max. output frequency (n011) is 100%.	0 to 255%	1\%	100\%	-
	075	Pulse-train frequency reference bias	Sets internal reference level in units of 1% when pulse-train input frequency is 0 Hz . Max. output frequency (n011) is 100%.	$\begin{gathered} -100 \text { to } \\ 100 \% \end{gathered}$	1\%	0\%	-
	076	Filter time constant for pulse-train frequency reference	Sets filter time constant for pulse-train input primary lag. (to avoid noise)	$\begin{gathered} 0.00 \text { to } \\ 2.00 \mathrm{~s} \end{gathered}$	0.01 s	0.10s	-
Selecting Multi- function Analog Input	077	Multi-function analog input selection	0 : Not valid 1: Auxiliary frequency reference (FREF2) 2 : Frequency reference gain (FGAIN) 3 : Frequency reference bias (FBIAS) 4 : Output voltage bias (VBIAS)	0 to 4	1	0	-
	078	Multi-function analog input signal selection	0 : Operator CN2 terminal VIN (0 to 10 V) 1: Operator CN2 terminal IIN (4 to 20 mA)	0.1	1	0	-
	079	Amount of frequency reference bias setting (FBIAS)	Max. output frequency (n011) is 100%.	0 to 50\%	1\%	10\%	-
Adjusting Carrier Frequency	080	Carrier frequency selection	Carrier frequency $1,2,3,4$: Set value $\times 2.5 \mathrm{~Hz}$ 7, 8, 9 : Proportional to output frequency of 2.5 kHz max. (lower limit 1 kHz)	$\begin{aligned} & 1 \text { to } 4 \\ & 7 \text { to } 9 \end{aligned}$	1	4*	31

Tertiary Function (Constant n080 to n119)

Function	Constant No. n	Function Name	Description	Setting Range	Setting Unit	Factory Setting	Ref. Page
Momentary Power Loss Ridethrough	081	Momentary power loss ridethrough method	0 : Not provided 1 : Continuous operation after power recovery within the power loss ridethrough time. 2 : Continuous operation after power recovery (no fault output of UV1)	0 to 2	1	0	28
Fault Retry	082	Automatic retry attempts	Sets automatic retry times after self-diagnosis when an inverter fault occurs.	0 to 10	1	0	29
Jump Frequency Control	083	Jump frequency 1	Sets frequency to jump. Disabled when setting value is 0.00 .	$\begin{gathered} 0.00 \text { to } \\ 400.0 \mathrm{~Hz} \end{gathered}$	0.01 Hz (less than 100 Hz) 0.1 Hz (more than $100 \mathrm{~Hz})$	0.00 Hz	29
	084	Jump frequency 2					
	085	Jump frequency 3					
	086	Jump frequency range	Sets the frequency range to jump. Disabled when setting value is 0.00 .	$\begin{gathered} 0.00 \text { to } \\ 25.50 \mathrm{~Hz} \end{gathered}$	0.01 Hz		
Cumulative Operation Time	087	Cumulative operation time function selection	0 : Adds time while the power for the inverter is ON until it is turned OFF. 1 : Adds time while the inverter is running and data is being output.	0, 1	-	0	-
	$088^{\# 3}$	Cumulative operation time	The factory setting is set in units of ten hours $(10 \mathrm{H})$. The operation time is added to this value.	0 to 6550	$1=10 \mathrm{H}$	0H	-
DC Injection Braking	089	DC injection braking current	Sets current value at DC injection braking. Inverter rated current is 100%.	0 to 100\%	1\%	50\%	$\begin{aligned} & 30 \\ & 31 \end{aligned}$
	090	DC injection braking time at stop	Sets DC injection braking time at ramp to stop in units of 0.1 sec . Disabled at stop when the setting value is 0.0 .	$\begin{aligned} & 0.0 \text { to } \\ & 25.5 \mathrm{~s} \end{aligned}$	0.1s	0.5 s	31
	091	DC injection braking time at start	Sets DC injection braking time at start in units of 0.1 sec . Disabled at start when the setting value is 0.0 .	$\begin{aligned} & 0.0 \text { to } \\ & 25.5 \mathrm{~s} \end{aligned}$	0.1s	0.0s	30
Stall Prevention	092	Stall prevention during deceleration	0 : Enabled (Sets 1 with braking resistor) 1 : Disabled	0, 1	1	0	34
	093	Stall prevention level during acceleration	Sets stall prevention level in units of 1% during acceleration. Inverter rated current is 100% (Notes: • Disabled with setting of 200%. - In constant output area, prevention level is automatically lowered.)	$\begin{gathered} 30 \text { to } \\ 200 \% \end{gathered}$	1\%	170\%	
	094	Stall prevention level during running	Sets stall prevention level in units of 1% during running. Inverter rated current is 100%. (Note : Disabled with setting of 200%)	$\begin{gathered} 30 \text { to } \\ 200 \% \end{gathered}$	1\%	160\%	
Frequency Detection	095	Frequency detection (multifunction contact output)	Sets frequency to detect when selected frequency detection at multi-function contact output or multi-function photocoupler output.	$\begin{gathered} 0.00 \text { to } \\ 400.0 \mathrm{~Hz} \end{gathered}$	$\begin{array}{\|c\|} \hline 0.01 \mathrm{~Hz} \\ \text { (less than } \\ 100 \mathrm{~Hz} \text {) } \\ 0.1 \mathrm{~Hz} \\ \text { (more than } \\ 100 \mathrm{~Hz} \text {) } \end{array}$	0.00 Hz	29
Detecting Overtorque	096	Overtorque detecting function selection 1	0 : Detection disabled 1 : Detected during constant-speed running, and operation continues during and after detection. 2 : Detected during constant-speed running, and inverter output is shut OFF after detection. 3 : Detected during running, and operation continues during and after detection. 4 : Detected during running, and inverter output is shut OFF after detection.	0 to 4	1	0	29
	097	Torque selection 2 (Vector control mode)	0 : Detected by torque. 1 : Detected by current.	0, 1	1	0	
	098	Overtorque detection level	Sets overtorque detection level when detecting at multifunction contact output and multi-function photocoupler output. - Inverter rated current is 100% when detecting by current. - Motor rated torque is 100% when detecting by torque.	$\begin{aligned} & 30 \text { to } \\ & 200 \% \end{aligned}$	1\%	160\%	
	099	Overtorque detection time	Sets overtorque detection time. Overtorque is detected when the set time or the overtorque detection level setting is exceeded.	$\begin{aligned} & 0.1 \text { to } \\ & 10.0 \mathrm{~s} \end{aligned}$	0.1s	0.1s	
Holding Output Frequency	100	Hold output frequecy saving selection	Selects whether or not to save the frequency when holding at UP/DOWN command from multi-function input terminal. 0 : Output frequency is not saved while holding 1 : When holding more than 5 sec , saves output frequency at holding and operates at this frequency when restarted.	0,1	1	0	-
Speed Search	101	Speed search deceleration time	Sets deceleration time for search speed when frequency reference changes from 100% to 0%.	$\begin{aligned} & 0.1 \text { to } \\ & 10.0 \mathrm{~s} \end{aligned}$	0.1s	2.0s	-
	102	Speed search operating current	Sets operating current for search speed.	$\begin{gathered} 0 \text { to } \\ 200 \% \end{gathered}$	1\%	150\%	-

[^2]Relation between new constants and version of VS-606V7 software
\#1: Available in version VSP010028 or later. (3.7kW max.)
\#2: Available in version VSP010032 or later. (3.7kW max.)
\#3: Available in version VSP010106 or later. (5.5 kW min.)

How to read this list

- Constants not described in this list are not displayed in the digital operator.
- Setting constants vary in accordance with password setting (n001). The frequency reference

FREF can be changed regardless of the n001 settings.

- Constants displayed in \square can be set and changed during operation.

Tertiary Function (Constant n080 to n119) (cont'd)

Function	Constant No. n \square	Function Name	Description	Setting Range	Setting Unit	Factory Setting	Ref. Page
Torque Compensation	103	Torque compensation gain	Sets torque compensation gain in units of 0.1. Normally, no adjustment necessary.	0.0 to 2.5	0.1	1.0	34
	104	Torque compensation time constant	Adjusts when motor output current is unstable or speed response is delayed.	$\begin{aligned} & 0.0 \text { to } \\ & 25.5 \mathrm{~s} \end{aligned}$	0.1s	$\begin{gathered} 0.3 \mathrm{~s} \\ (0.2 \mathrm{~s}) \end{gathered}$	-
	105	Torque compensation iron loss (in V/f control mode)	Used when operating torque compensation inside the inverter. As appropriate value is set before shipment, no adjustment is necessary. (Adjust only when inverter capacity and motor capacity are different)	$\begin{aligned} & 0.0 \text { to } \\ & 6550 \mathrm{~W} \end{aligned}$	$\begin{array}{\|c\|} \hline 0.1 \mathrm{~W} \text { (less } \\ \text { than } \\ 1000 \mathrm{~W}) \\ 1 \mathrm{~W}(\mathrm{more} \\ \text { than } \\ 1000 \mathrm{~W}) \end{array}$		-
Motor Constants	106	Motor rated slip	Sets motor rated slip in units of 0.1 Hz .	$\begin{gathered} 0.0 \text { to } \\ 20.0 \mathrm{~Hz} \end{gathered}$	0.1 Hz		-
	107	Line to neutral (per phase)	Sets one phase resistance value (the half value). [Yaskawa standard motor constant for the inverter capacity (kVA) is set before shipment]	$\begin{aligned} & 0.00 \text { to } \\ & 65.50 \Omega \end{aligned}$	$\begin{gathered} 0.001 \Omega \\ \text { (less } \\ \text { than } 10 \Omega \text {) } \\ 0.01 \Omega \\ (\text { more } \\ \text { than } 10 \Omega) \end{gathered}$	*	-
	108	Motor leakage inductance (in vector control mode)	Sets motor leakage inductance in units of 0.01 or 0.1 mH . [Yaskawa standard motor constant for the inverter capacity (kVA) is set before shipment]	$\begin{gathered} 0.00 \text { to } \\ 655.0 \mathrm{mH} \end{gathered}$	0.01 mH (less than 100 mH) 0.1 mH (more than 100 mH)		-
	109	Torque compensation voltage limiter (in vector control mode)	Sets the upper limit value of torque compensation voltage.	0 to 250%	1\%	150\%	-
	110	Motor no-load current	Sets motor no-load current proportional to the motor rated current.	0 to 99%	1\%	*	35
Slip Compensation Function	111	Slip compensation gain	For motor slipping calculated from the output current, sets gain to correct output frequency in units of 0.1 .	0.0 to 2.5	0.1	$\begin{gathered} 0.0 \\ (1.0) \end{gathered}$	35
	112	Slip compensation time constant	Adjusts for unstable speed and slow speed response.	$\begin{aligned} & 0.0 \text { to } \\ & 25.5 \mathrm{~s} \end{aligned}$	0.1s	$\begin{gathered} 2.0 \mathrm{~s} \\ (0.2 \mathrm{~s}) \end{gathered}$	-
	113	Slip correction during regenerative operation (in vector control mode)	0 : Invalid 1 : Valid	0, 1	-	0	-
MECHATROLINK Communications	$114^{\# 2}$	Number of transmission cycle error detection (For SI-T/V7)	Assigns a number, which is the allowable number of transmission-cycle errors.	2 to 10	1	2	-
Stall Prevention during Running	115	Auto-lowering function selection of stall prevention level during running	Stall prevention level during running can be lowered within the constant output area. 0 : Not valid 1 : Valid	0, 1	1	0	-
	116	Accel / decel time selection at stall prevention during running	Accel / decel time at stall prevention during running can be fixed at accel / decel time 2 (n021, n022). 0 : Not valid 1 : Valid	0,1	1	0	-
Detecting Undertorque	117	Undertorque detecting function selection	0 : Detection disabled 1 : Detected during constant-speed running, and operation continues during and after detection. 2 : Detected during constant-speed running, and inverter output is shut OFF after detection. 3 : Detected during running, and operation continues during and after detection. 4 : Detected during running, and inverter output is shut OFF after detection.	0 to 4	1	0	-
	118	Undertorque detection level	Sets undertorque detection level when detecting at multifunction contact output and multi-function photocoupler output. - Inverter rated current is 100% when detecting by current. - Motor rated torque is 100% when detecting by torque.	0 to 200\%	1\%	10\%	
	119	Undertorque detection time	Sets undertorque detection time. Undertorque is detected when a current under the detection level is output for longer than the set time.	$\begin{aligned} & 0.1 \text { to } \\ & 10.0 \mathrm{~s} \end{aligned}$	0.1s	0.1s	

* Factory setting values are different according to inverter capacity.

Note: Factory setting values in parentheses are those in vector control mode.

Quaternary Function (Constant n120 to n179)

Function	Constant N o. n \square	Function Name	Description	Setting Range	Setting Unit	Factory Setting	Ref. Page
Frequency Reference FREF	120	Frequency reference 9	Sets ninth frequency reference. It is effective when multi-step speed reference 4 is selected in multi-function contact input.	$\begin{gathered} 0.00 \text { to } \\ 400.0 \mathrm{~Hz} \end{gathered}$	0.01 Hz(less than100 Hz)0.1 Hz(morethan 100Hz)	0.00 Hz	27
	121	Frequency reference 10	Sets tenth frequency reference. It is effective when multi-step speed references 1 and 4 are selected in multi-function contact input.				
	122	Frequency reference 11	Sets eleventh frequency reference. It is effective when multi-step speed references 2 and 4 are selected in multi-function contact input.				
	123	Frequency reference 12	Sets twelfth frequency reference. It is effective when multi-step speed references 1,2 , and 4 are selected in multi-function contact input.				
	124	Frequency reference 13	Sets thirteenth frequency reference. It is effective when multi-step speed references 3 and 4 are selected in multi-function contact input.				
	125	Frequency reference 14	Sets fourteenth frequency reference. It is effective when multi-step speed references 1,3 , and 4 are selected in multi-function contact input.				
	126	Frequency reference 15	Sets fifteenth frequency reference. It is effective when multi-step speed references 2,3 , and 4 are selected in multi-function contact input.				
	127	Frequency reference 16	Sets sixteenth frequency reference. It is effective when multi-step speed references $1,2,3$, and 4 are selected in multi-function contact input.				
PID Control	128	PID control selection	0 : PID control disabled. 1 : Deviation D-control 2 : Feedback value D-control 3 : Frequency reference + PID output, deviation D-control 4 : Frequency reference + PID output, feedback value D-control 5 : Deviation D-control 6 : Feedback value D-control 7 : Frequency reference + PID output, deviation D-control 8 : Frequency reference + PID output, feedback value D-control Note: PID output characteristics for setting 5 to 8 are reversed (output code is reversed).	0 to 8	1	0	-
	129	PID feedback gain	-	$\begin{gathered} 0.00 \\ \text { to } \\ 10.00 \\ \hline \end{gathered}$	0.01	1.00	-
	130	Proportional gain (P)	Sets P-control proportional gain by multiplication. Note: P-control invalid at 0.0 .	$\begin{gathered} 0.0 \text { to } \\ 25.0 \end{gathered}$	0.1	1.0	-
	131	Integral time (I)	Sets I-control integral time in units of seconds. Note: I-control invalid at 0.0.	$\begin{aligned} & 0.0 \text { to } \\ & 360.0 \end{aligned}$	0.1s	1.0	-
	132	Differential time (D)	Sets D-control differential time in units of seconds. Note: D-control invalid at 0.0.	$\begin{gathered} 0.00 \text { to } \\ 2.50 \end{gathered}$	0.01s	0.00	-
	133	PID offset adjustment	Sets PID offset as \% (max output frequency as 100\%). (100\%/max. output frequency)	$\begin{aligned} & -100 \text { to } \\ & +100 \% \end{aligned}$	1\%	0\%	-
	134	Upper limit of integral values	Sets the upper limit after I-control as \% (max. output frequency as 100%) ($100 \% /$ max. output frequency)	0 to 100%	1\%	100\%	-
	135	Primary Delay Time Constant of PID output	Sets low pass filter time constant for PID control output in units of seconds.	0.0 to 10.0	0.1s	0.0	-
	136	Selection of PID feedback loss detection	0 : PID feedback loss not detected. $1:$ PID feedback loss detected (operation continued: FbL alarm.) 2 : PID feedback loss detected (output shut down: FbL fault)	0 to 2	1	0	-
	137	PID feedback loss detection level	Sets PID feedback loss detection level as \% (100\%/max. output frequency)	0 to 100%	1\%	0\%	-
	138	PID feedback loss detection time	Sets PID feedback loss detection time in units of seconds.	0.0 to 25.5	0.1s	1.0	-

Relation between new constants and version of VS-606V7 software
\#1: Available in version VSP010028 or later. (3.7kW max.) \#2: Available in version VSP010032 or later. (3.7kW max.) \#3: Available in version VSP010106 or later. (5.5 kW min.)

How to read this list

- Constants not described in this list are not displayed in the digital operator.
- Setting constants vary in accordance with password setting (n001). The frequency reference FREF can be changed regardless of the n001 settings.
- Constants displayed in \square can be set and changed during operation.

Quarternary Function (Constant n120 to n179) (cont'd)

Function	Constant No. n	Function Name	Description	Setting Range	Setting Unit	Factory Setting	Ref. Page
Energy- saving Control* ${ }^{* 1}$	139*1	Energy-saving control selection (V/f control mode)	0 : Energy-saving control disabled 1 : Energy-saving control enabled	0,1	1	0	-
	140	Energy-saving coefficient K2	Sets the coefficient to maximize the motor efficiency.	0.0 to 6550	0.1 (less than 1000) 1 (more than 1000)	*2	-
	141	Energy-saving control voltage lower limit (At 60Hz)	Sets the lower limit for the output voltage reference calculated at 60 Hz in the energy-saving mode. Motor rated voltage is 100%.	$\begin{gathered} 0 \\ \text { to } \\ 120 \% \end{gathered}$	1\%	50\%	-
	142	Energy-saving control voltage lower limit (At 6Hz)	Sets the lower limit for the output voltage reference calculated at 6 Hz in the energy-saving mode. Motor rated voltage is 100%.	$\begin{gathered} 0 \\ \text { to } \\ 25 \% \end{gathered}$	1\%	12\%	-
	143	Power average time	Sets the power average time calculated in the energy-saving mode ($1=24 \mathrm{~ms}$)	1 to 200	$1=24 \mathrm{~ms}$	$\begin{gathered} 1 \\ (24 \mathrm{~ms}) \end{gathered}$	-
	144	Voltage-limit during automatic optimum voltage tuning	Limits the voltage-control range when adjusting automatic optimum voltage.	$\begin{gathered} 0 \\ \text { to } \\ 100 \% \end{gathered}$	1\%	0\%	-
	145	Voltage step width during automatic optimum voltage tuning (At 100\%)	Sets the voltage step width in units of 0.1% when the starting voltage is 100% when adjusting automatic optimum voltage. Motor rated voltage is 100%.	$\begin{gathered} 0.1 \\ \text { to } \\ 10 \% \end{gathered}$	0.1\%	0.5\%	-
	146	Voltage step width during automatic optimum voltage tuning (At 50\%)	Sets the voltage step width in units of 0.1% when the starting voltage is 5% when adjusting automatic optimum voltage. Motor rated voltage is 100%.	$\begin{gathered} 0.1 \\ \text { to } \\ 10.0 \% \end{gathered}$	0.1\%	0.2\%	-
Pulse-Train Input	149	Pulse-train input scaling	Sets pulse-train input frequency at max. output frequency (n011). (n149/max. output frequency : eg. $2500 / 60 \mathrm{~Hz}$)	$\begin{aligned} & 100 \text { to } 3300 \\ & {[1 \text { to } 33 \mathrm{kHz} \text {] }} \end{aligned}$	$\begin{gathered} 1 \\ {[10 \mathrm{~Hz}]} \end{gathered}$	$\begin{gathered} 2500 \\ {[25 \mathrm{kHz}]} \end{gathered}$	23
Pulse Output Monitor	150	Pulse train signal output	Using analog output (AM-AC) as follows: Output frequency monitor $0: 1440$ Hz/Max. output frequency (n011) $12: 12 \mathrm{f}$ output $1:$ 1f output $24: 24 \mathrm{f}$ output $6:$ ff output $36: 36 \mathrm{f}$ output Frequency reference monitor $40: 1440 \mathrm{~Hz} /$ Max. output frequency (n011) $43: 12 \mathrm{f}$ output $41: 1 \mathrm{f}$ output $44: 24 \mathrm{f}$ output $42:$ ff output $45: 36 \mathrm{f}$ output	$\begin{gathered} 0,1,6 \\ 12,24,36, \\ 40 \text { to } 45 \end{gathered}$	1	0	-
MEMOBUS Communication	151	MEMOBUS timeover detection	0 : Time-over detection is enabled. (Coast to a stop) 1: Time-over detection is enabled. (Ramp to stop-Decel. 1) 2 : Time-over detection is enabled. (Ramp to stop-Decel. 2) 3: Time-over detection is enabled. (Continue operation - alarm) 4 : Time-over detection is disabled.	0 to 4	1	0	
	152	MEMOBUS frequency reference and frequency monitor unit	$\begin{aligned} & 0: 0.1 \mathrm{~Hz} \\ & 1: 0.01 \mathrm{~Hz} \\ & 2: 30000 / 100 \%(30000=\text { MAX. output frequency }) \\ & 3: 0.1 \% \end{aligned}$	0 to 3	1	0	
	153	MEMOBUS slave address	Allocates inverter MEMOBUS communication slave address between 0 and 32. Note: When set to " 0 ", ignores command from master and does not respond.	0 to 32	1	0	36
	154	MEMOBUS BPS selection	$\begin{aligned} & 0: 2400 \mathrm{bps} \\ & 1: 4800 \mathrm{bps} \\ & 2: 9600 \mathrm{bps} \\ & 3: 19200 \mathrm{bps} \end{aligned}$	0 to 3	1	2	
	155	MEMOBUS parity selection	0 : Even parity 1 : Odd parity 2 : No parity	0 to 2	1	0	
	156	Transmission waiting time	-	0 to 65 ms	1 ms	10 ms	
	157	RTS Control	$\begin{aligned} & 0: \text { Enabled } \\ & 1: \text { Disabled (RS-422: at } 1: 1 \text { communication) } \end{aligned}$	0, 1	1	0	

[^3]| Function | Constant No.
 n | Function Name | Description | Setting Range | Setting Unit | Factory Setting | Ref. Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Energy-
 saving
 Control*1 | 158 | Motor code (Energy-saving control) | - | 0 to 70 | 1 | *2 | - |
| | 159 | Upper voltage limit for energy-saving control (At 60Hz) | Sets the upper limit for the output voltage reference calculated at 60 Hz in energy-saving mode. Motor rated voltage is 100%. | 0 to 120% | 1\% | 120\% | - |
| | 160 | Upper voltage limit for energy-saving control (At 60Hz) | Sets the upper limit for the output voltage reference calculated at 6 Hz in energy-saving mode. Motor rated voltage is 100%. | $\begin{gathered} 0 \\ \text { to } \\ 25 \% \end{gathered}$ | 1\% | 16\% | - |
| | 161 | Power detection hold width during automatic optimum voltage tuning | The output voltage is held when the power variance is less than this value.
 Note: When 0% is set, functions at initial value 10%. | $\begin{gathered} 0 \\ \text { to } \\ 100 \% \end{gathered}$ | 1\% | 10\% | - |
| PID
 Control | 162 | Time constant of power detection filter | Response at load change is improved when this value is small. Note: When set to 0 , functions at initial value $5(20 \mathrm{~ms})$. | 0 to 255 | $1=4 \mathrm{~ms}$ | $\begin{gathered} 5 \\ {[20 \mathrm{~ms}]} \end{gathered}$ | - |
| | 163 | PID output gain | Adjusts PID control gain | $\begin{gathered} 0.0 \\ \text { to } \\ 25.0 \\ \hline \end{gathered}$ | 0.1 | 1.0 | - |
| | 164 | PID feedback value selection | 0 : Control circuit terminal FR (Voltage 0 to 10V)
 1 : Control circuit terminal FR (Current 4 to 20mA)
 2 : Control circuit terminal FR (Current 0 to 20mA)
 3 : Operator terminal (Voltage 0 to 10V)
 4 : Operator terminal (Current 4 to 20mA)
 5 : Pulse train | $\begin{gathered} 0 \\ \text { to } \\ 5 \end{gathered}$ | 1 | 0 | - |
| Braking Resistor Protection | 165 | Externally-mounting type braking resistor overheat protection selection | 0 : With protection.
 1 : Without protection.
 Note: Set to zero (0) if not using an externally mounted braking resistor. | 0,1 | 1 | 0 | - |
| Open-phase
 Detection | 166 | Input open-phase detection level | Sets by direct-voltage level the level at which the input open phase can be detected. 400 VDC at 100% in 200 V class.
 (800 VDC at 100% in 200 V class.)
 Note : Disabled with a setting of 0%. | $\begin{gathered} 0 \\ \text { to } \\ 100 \% \end{gathered}$ | 1\% | 0\% | - |
| | 167 | Input open-phase detection time | Sets the time for detection of the input open-phase. The input open phase is detected when the open-phase voltage is output for longer than the set time.
 Note : Disabled with a setting of 0s. | $\begin{gathered} 0 \\ \text { to } \\ 255 \mathrm{~s} \end{gathered}$ | 1 s | 0s | - |
| | 168 | Output open-phase detection level | Sets by direct-current level the level at which the output open phase can be detected.
 100\%/Inverter rated current
 Note : Disabled with a setting of 0%. | $\begin{gathered} 0 \\ \text { to } \\ 100 \% \end{gathered}$ | 1\% | 0\% | - |
| | 169 | Output open-phase detection time | Sets the time for detection of the output open phase. The output open phase is detected when the open-phase current is output for longer than the set time.
 Note : Disabled with a setting of 0s. | $\begin{gathered} 0.0 \\ \text { to } \\ 2.0 \mathrm{~s} \end{gathered}$ | 0.1s | 0.0s | - |
| UP/DOWN
 Command 2 | $170^{\# 1}$ | ENTER command operation selection (MEMOBUS communications) | - | 0,1 | - | 0 | - |
| | $171^{\# 1}$ | Frequency reference bias upper limit (UP/DOWN command 2) | - | 0.0 to
 100.0%
 $(\mathrm{n} 011 / 100 \%)$ | 0.1\% | 0.0\% | - |
| | $172^{\# 1}$ | Frequency reference bias lower limit (UP/DOWN command 2) | - | $\begin{array}{\|c\|} \hline-99.9 \text { to } \\ 0.0 \% \\ (\mathrm{n} 011 / 100 \%) \\ \hline \end{array}$ | 0.1\% | 0.0\% | - |
| DC Braking | 173 | Proportional (P) gain | Adjusts P-gain for DC braking. | 1 to 999 | $1=0.001$ | $\begin{gathered} 83 \\ {[0.083]} \end{gathered}$ | - |
| | 174 | Integral (I) time constant | Adjusts the I-time constant for DC braking. | 1 to 250 | $1=4 \mathrm{~ms}$ | $\begin{gathered} 25 \\ {[100 \mathrm{~ms}]} \end{gathered}$ | - |
| Carrier
 Frequency
 Selection | 175 | Reducing carrier frequency selection at low speed | 0 : Invalid
 1 : Valid | 0,1 | 1 | 0 | - |
| Control Copy Function | 176 | Constant copy function selection | rdy : READY vFy : VERIFY
 rEd : READ vA : Inverter capacity display
 Cpy : COPY Sno : Software No. display | rdy, rEd cPy, uFu vA, Sno | - | rdy | - |
| | 177 | Constant Read selection Prohibit | 0 : READ prohibited
 1 : READ allowed | 0,1 | 1 | 0 | - |
| Fault History | 178 | Fault history | Displays the most recent 4 faults (only for monitoring) | - | - | - | - |
| Software Version | 179 | Software Version No. | Displays the lowest 4 digits of software No. (only for monitoring) | - | - | - | - |

VS-606V7 functions are described in accordance with following objectives.

Objectives	Functions	Ref. Page
Items Should be Verified Before Operation	- Control mode selection - Accel/decel time setting - V/f pattern setting	$\begin{aligned} & 24 \\ & 24 \\ & 24 \end{aligned}$
	- Motor rotation direction setting - LOCAL (operator)/REMOTE (control circuit terminal) selection - Motor rated current setting - Operation mode selection - Constant set-up	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$
Setting Operating Condition	- Reverse run prohibit - Frequency reference setting by pulse train input - Multi-step speed selection	$\begin{aligned} & 26 \\ & 26 \\ & 26 \end{aligned}$
	- Adjusting frequency setting signal - Jog operation	$\begin{aligned} & 27 \\ & 27 \end{aligned}$
	- Adjusting frequency upper and lower limits - Using two accel/decel times - Automatic restart after momentary power loss - Soft-start characteristics (S-curve)	28 28 28 28
	- Torque detection - Continuous operation by automatic fault reset - Frequency detection - Avoiding resonance	$\begin{aligned} & 29 \\ & 29 \\ & 29 \\ & 29 \end{aligned}$
	- Starting into a coasting motor - Holding accel/decel temporarily - Using frequency meter or ammeter	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$
	- Adjusting frequency meter or ammeter - Reducing motor noise and leakage current	$\begin{aligned} & 31 \\ & 31 \end{aligned}$
Selecting Method to Stop	- Operator stop key selection - Selecting stopping method - Applying DC injection braking	$\begin{aligned} & 31 \\ & 31 \\ & 31 \end{aligned}$
Building Interface Circuit with External Devices	- Using multi-function input signals - Using multi-function output signals	$\begin{aligned} & 32 \\ & 33 \end{aligned}$
Adjusting Motor Torque	- Adjusting torque according to application - Preventing motor from stalling (Current limit)	34 34
Improving Motor Speed Regulation	- Slip compensation	35
Motor Protection	Motor overload detection	36
Controlling by MEMOBUS Communication	-	36

The set value displayed in \square is factory setting.

Items Should be Verified Before Operation

Control mode selection

Selects control mode according to your application.
0 : V/f control
1 : Vector control
The initial value is set to V / F control.

- "V/f control" is optimum for fluid machines such as fans, blowers and pumps, while "Vector control" for machines required for high-torque at low speeds such as for carriers and extruder.
- For Vector control, set motor constants (n106 to n110). For details, refer to the instruction manual.

Accel/decel time setting

Accel time 1, 2 rin \boldsymbol{r} 里 rin

Accel time : Sets the time needed for the motor to accelerate to the maximum output frequency from the stopped status.
Decel time : Sets the time needed for the motor to stop from the maximum output frequency.

RUN
COMMAND

V/f pattern setting

Max. output frequency
Max. voltage
nin it

Max. voltage output frequency \min i \mathcal{B}
Sets the V/f pattern which matches the motor characteristics.
When operating at $50 / 60 \mathrm{~Hz}$ or more frequency, change only

Motor rotation direction setting

FWD/REV direction selection F/R

Sets the motor rotation direction when run command is given by the digital operator.
FWD and REV run can be switched by pressing Λ or V key.

LOCAL (operator)/REMOTE (control circuit terminal) selection
 LOCAL/REMOTE switching LO/RE

Operation can be switched from digital operator or control circuit terminal. This function is valid only when stopped.
Eg : Digital operator/control circuit terminal selection:
Operation mode selection $\quad \mathrm{n} 003=1$
Frequency reference selection n004=2, 3, 4 or 5
Local (LO) : Receives frequency reference (set at n008) and run command from digital operator
Remote (RE) : Receives frequency reference (FR, RP) and run command (terminals S1 and S2) of circuit control terminal

Note: When local/remote selection function is allocated to multi-function input terminal, switching operation using \triangle and ∇ keys is invalid.

Motor rated current setting

Motor rated current rat
Sets motor rated current. The following table shows the standard set value for each inverter capacity. When the applicable motor rated current value differs from the value listed below, change the set value.

VS-606V7 model CIMR-V7 $\square \square \square$	$\begin{array}{\|l\|} \hline \text { 20P1 } \\ \mathrm{BOP1} \\ \hline \end{array}$	$\begin{aligned} & 20 \mathrm{P} 2 \\ & \mathrm{BOP} 2 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 20P4 } \\ \text { BOP4 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 20P7 } \\ \text { BOP7 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 21P5 } \\ \text { B1P5 } \end{array}$	$\begin{aligned} & 22 \mathrm{P} 2 \\ & \mathrm{~B} 2 \mathrm{P} 2 \end{aligned}$	$\begin{array}{\|l\|} \hline 23 P 7 \\ \text { B3P7 } \end{array}$	25P5	27P5
Max. Applicable Motor Output kW(HP)	$\left\|\begin{array}{c} 0.1 \\ (0.13) \end{array}\right\|$	$\begin{gathered} 0.2 \\ (0.25) \end{gathered}$	$\begin{gathered} 0.4 \\ (0.5) \end{gathered}$	$\begin{gathered} 0.75 \\ (1) \end{gathered}$	$\begin{aligned} & 1.5 \\ & (2) \end{aligned}$	$\begin{aligned} & 2.2 \\ & (3) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.7 \\ & (5) \end{aligned}$	$\begin{gathered} 5.5 \\ (7.5) \end{gathered}$	$\begin{gathered} 7.5 \\ (10) \end{gathered}$
Motor Current Factory Setting A	0.6	1.1	1.9	3.3	6.2	8.5	14.1	19.6	26.6
VS-606V7 model CIMR-V7 \square C \square	40P2	40P4	40P7	41P5	42P2	43P0	43P7	45P5	47P5
Max. Applicable Motor Output kW(HP)	$\begin{gathered} 0.2 \\ (0.25) \end{gathered}$	$\begin{gathered} 0.4 \\ (0.5) \end{gathered}$	$\begin{array}{\|c\|} \hline 0.75 \\ (1) \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & (2) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & (3) \\ & \hline \end{aligned}$	$\begin{gathered} 3 \\ (4) \end{gathered}$	$\begin{aligned} & 3.7 \\ & (5) \end{aligned}$	$\begin{array}{\|c\|} \hline 5.5 \\ (7.5) \\ \hline \end{array}$	$\begin{gathered} 7.5 \\ (10) \\ \hline \end{gathered}$
Motor Current Factory Setting A	0.6	1.0	1.6	3.1	4.2	7.0	7.0	9.8	13.3

Operation mode selection

Run command selection
rind

Selects whether operation is performed by digital operator or control circuit terminal.

Setting	Run Command ring
0	Operator
1	Control circuit terminal S1, S2
2	Communication

Setting	Frequency Reference
0	Volume
1	Operator (Frequency reference 1$)$ rinerd
2	Control circuit terminal FR $(0$ to 10V)
3	Control circuit terminal FR (4 to 20mA)
4	Control circuit terminal FR (0 to 20mA)
5	Control circuit terminal RP (pulse-train)
6	Communication (register No., 0002H)

Notes: • When set to 3 or 4 (current input reference), dip switch setting must be changed. For details, refer to the instruction manual.

- When set to 5 (pulse-train input reference), set the input pulse frequency for the max. output frequency (n 011). With pulse train input scaling (n149), reference frequency is (n149)/max. output frequency (n 011). [Factory setting is $2500(25 \mathrm{kHz})$ / max. output frequency.]
- The n004 initial setting (frequency reference selection) is " 1 " when the model has operator without volume (JVOP-147). When initialized, n004 setting is turned to " 0 ".

Constant set-up

Password nind it

The following table describes the data which can be set or read when n001 is set.

Setting	Constant that can be set	Constant that can be read
0 (Constant write disable)	n001 only	n001 to 0179
1	n001 to n049 read/set	
2	n001 to n079 read/set	
3	n001 to n119 read/set	
4	n001 to n179 read/set	
5	n001 to n179 read and set (Run command can be received in Program mode.)	
6	Fault history clear	
8^{*}	Constant initialization (factory setting: 2-wire sequence)	
9^{*}	Constant initialization (3-wire sequence)	

[^4][^5]\square is factory setting.

Setting Operating Condition

Reverse run prohibit

Reverse run prohibit ran

"Reverse run disabled" setting does not accept a reverse run command from the control circuit terminal or digital operator. This setting is used for applications where a reverse run command can cause problems.

Setting	Description
0	Reverse run enabled.
1	Reverse run disabled.

Frequency reference setting by pulse train input

With pulse-train input from control circuit terminals, frequency reference can be set.

Input pulse specifications

- LOW level voltage 0.8 or less
- HIGH level voltage 3.5 to 13.2 V
- H duty 30 to 70%
- Pulse frequency 0 to 33 kHz

Frequency setting method

The command frequency can be calculated by multiplying the max. output frequency by the ratio of the set max. value of input pulse frequency to the actual input pulse frequency.

Constant No.	Function Name	Setting Range	Factory Setting
n 003	Run command selection	0 to 3	0
n 004	Frequency reference selection	0 to 9	0
n 149	Pulse train input scaling $1=10 \mathrm{~Hz}$	100 to $3300(33 \mathrm{kHz})$	$2500(25 \mathrm{kHz})$

Multi-step speed selection

 Muli-function input teminal function selection ratish to raseBy combining 16-step frequency references, one jog frequency reference and multi-function terminal function selection, up to 17 steps of speed variations can be set step by step.

An example of 2-step speed change n003 $=1$ (Operation mode selection)
n004 $=1$ (Frequency reference selection)
$\mathrm{n} 024=30.0 \mathrm{~Hz}$
$\mathrm{n} 025=50.0 \mathrm{~Hz}$

Note : When n004 is set to $0,2,3,4$, or 5 , frequency reference 1 (n024) is disabled and frequency reference from volume (0) or control circuit terminal (FR, RP) is enabled.

MULTI-STEP SPEED REF
(TERMINAL S5)

An example of 8-step speed change

n003 $=1$ (Operation mode selection)
n004 $=1$ (Frequency reference selection)
n056 $=8$ (Multi-function input terminal S7)
$\mathrm{n} 024=25.0 \mathrm{~Hz}$
$\mathrm{n} 025=30.0 \mathrm{~Hz}$
$\mathrm{n} 026=35.0 \mathrm{~Hz}$
$\mathrm{n} 027=40.0 \mathrm{~Hz}$
$\mathrm{n} 028=45.0 \mathrm{~Hz}$
$\mathrm{n} 029=50.0 \mathrm{~Hz}$
$\mathrm{n} 030=55.0 \mathrm{~Hz}$
$\mathrm{n} 031=60.0 \mathrm{~Hz}$

An example of 16 －step speed change（ 9 to 16 steps）
16 －step speed operation can be set by the following setting of multi－function input terminals（S4 to S7）with combination of 4 inputs in the same way as for 8 －step speed operation．
－Multi－step speed reference $1 \rightarrow$ Terminal S4（n053＝6）
－Multi－step speed reference $2 \rightarrow$ Terminal S5（n054＝7）
－Multi－step speed reference $3 \rightarrow$ Terminal S6（n055＝8）
－Multi－step speed reference $4 \rightarrow$ Terminal S7（n056＝9）
Note： 8 －step speed operation is when multi－step speed reference $4=$ OFF，and 16 －step speed operation is when multi－step speed reference $4=\mathrm{ON}$ ．
Frequency reference for 9 －step to 16 －step speed operation is the setting of n 120 to n 127 respectively．
n003 $=1$（Operation mode selection）
n004 $=1$（Frequency reference selection）

Adjusting frequency setting signal

Frequency reference gain rab
 Frequency reference bias raribi

When the frequency reference is output by analog input of control circuit terminals FR and FC，the relation between analog voltage and frequency reference can be set．
Frequency reference gain（n060） The analog input voltage value for the maximum output frequency（n011）can be set in units of 1% ．
Factory setting ：100\％
Frequency reference bias（n061）
The frequency reference provided when analog input
 is $0 \mathrm{~V}(4 \mathrm{~mA}$ or 0 mA$)$ can be
set in units of 1% ．
［n011：Maximum output frequency $=100 \%$ ］
Factory setting ：0\％
Gain ：Outputs $\mathrm{A} \%$（ratio to max．output frequency n011） at 10 V ．
$\Rightarrow \mathrm{n} 060=\mathrm{A} \%$
Bias ：Outputs $\mathrm{B} \%$（ratio to max．output frequency n011） at 0 V ．
\Rightarrow n061 $=\mathrm{B} \%$
Typical Settings
－At 0 to 5 V input
－To operate the inverter with frequency reference of 50% to 100% at 0 to 10 V input

Jog Operation

Jog frequency reference

Jog command selection

FREF rinヨコ ringin to ribye

By inputting a jog command and then a forward （reverse）run command，operation is enabled at the jog frequency set in n032．When multi－step speed references $1,2,3$ or 4 are input simultaneously with the jog command，the jog command has priority．

Name	Constant no．	Setting
Jog frequency reference	n 032	Factory setting $: 6.00 \mathrm{~Hz}$
Jog command	n 050 to 056	Set to＂10＂for any constant．

\qquad is factory setting．

Adjusting frequency upper and lower limits

 Frequency reference upper limit rat日是 Frequency reference lower limit $n \boldsymbol{r i n}$
Frequency reference upper

 limit（n033）Sets the upper limit of the frequency reference in units of 1% ．
［n011 ：Maximum output frequency ＝100\％］
Factory setting ：100\％
Frequency reference lower limit（n034）

Sets the lower limit of the frequency reference in units of 1% ． ［n011：Maximum output frequency $=100 \%$ ］
When operating at frequency reference 0 ，operation continues at the frequency reference lower limit．
However，when frequency reference lower limit is set to less than the minimum output frequency（n016），operation is disabled．
Factory setting ：0\％

\section*{Using two accel／decel times
 Accel time 1， 2
 | rin is | Mrabi |
| :---: | :---: |
| Mramed | |
| ribst | －minge |

By setting input terminal function selection（one of n050 to n056）to＂ 8 ＂（accel／decel time select），accel／decel time is selected by turning ON／OFF the accel／decel time select（one terminal of S1 to S7）．
At OFF ：n019（accel time 1）
n020（decel time 1）
At ON ：n021（accel time 2）
n022（decel time 2）

No．	Name	Unit＊	Setting range	Factory setting
n019	Accel time 1	0.1 s	0.0 to 6000 s	10.0 s
n020	Decel time 1	0.1 s	0.0 to 6000 s	10.0 s
n021	Accel time 2	0.1 s	0.0 to 6000 s	10.0 s
n022	Decel time 2	0.1 s	0.0 to 6000 s	10.0 s

＊：Setting unit differs depending on the constant n018．

－Accel time

Set the time needed for output frequency to reach 100% from 0\％．
－Decel time
Set the time needed for output frequency to reach 0% from 100% ．

Automatic restart after momentary power loss

Operation selection after momentary power loss rin

When momentary power loss occurs，operation restarts automatically．

Setting $^{* 1}$	Description
0	Continuous operation after momentary power loss not provided．
$1^{* 2}$	Continuous operation after power recovery within 0.5 second．
$2 * 3$	Continuous operation after power recovery（Fault output not provided）．

＊1 Do not select 5 to 100 as they are reserved for future use．
＊2 Hold the operation command to continue the operation after recovery from a momentary power loss．
＊3 When 2 is selected，operation restarts if power supply voltage reaches its normal level．No fault signal is output．

Soft－start characteristics（S－curve）

S－curve accel／decel time selection \boldsymbol{r} 组

To prevent shock at machine start／stop，accel／decel can be performed in S－curve pattern．

Setting	S－curve characteristic time
0	S－curve characteristic not provided
1	0.2 second
2	0.5 second
3	1.0 second

Note ：S－curve characteristic time is the time from accel／decel rate 0 to a regular accel／decel determined by the set accel／decel time．

Time chart at FWD／REV run switching at deceleration to a stop

Torque detection

Overtorque detection function selection 1, (2) r ride
 (ring $)$
 Overtorque detection level rasB

If excessive load is applied to the machine, output current increase can be detected by output alarm signals at multi-function output terminals MA, MB and MC or multi-function photocoupler output P1, P2 and PC.
To output overtorque detection signal, set multi-function output terminal selection n057, n058 or n059 to "overtorque detection (set 6 or 7)".

Overtorque detection function selection 1 (n096)

Setting	Description
0	Overtorque detection not provided.
1	Detected only during constant-speed running, and operation continues after detection.
2	Detected only during constant-speed running, and operation stops after detection.
3	Detected during running, and operation continues after detection.
4	Detected during running, and operation stops after detection.

Overtorque detection function selection 2 (n097): only for vector control

| Setting | Description |
| :---: | :--- | :--- |
| 0 | Detected by torque |
| 1 | Detected by current |

Note : When V/f control mode is selected, the setting of n097 is invalid and overtorque is detected by output current.

Continuing operation by automatic fault reset

Sets the inverter to restart and reset fault detection after a fault occurs.
The number of self-diagnosis and retry attempts can be set at n082 up to 10 times.
The inverter will automatically restart after the following faults occur :

- OC (overcurrent)
- OV (overvoltage)

The number of retry attempts are cleared to 0 in the following cases :

- If no other fault occurs within 10 minutes after retry
- When the fault reset signal is ON after the fault is detected
- Power supply is turned OFF

Frequency detection

Frequency detection level rang

Effective when output terminal function selections n057, n058 or n059 are set to "frequency detection (setting : 4 or 5). "Frequency detection" turns ON when output frequency is higher or lower than the frequency detection level (n095).
Frequency detection 1 (Output frequency \geqq Frequency detection level)
(Set n057, n058 or n059 to "4")

Frequency detection 2 (Output frequency \leqq Frequency detection level)
(Set n057, n058 or n059 to " 5 ")

Avoiding resonance

This function allows the prohibition or "jumping" of critical frequencies so that the motor can operate without resonance caused by machine systems. This function is also used for dead band control. Setting the value to 0.0 Hz disables this function.

Set jump frequency 1, 2 or 3 as follows:

$\mathrm{n} 083 \geqq \mathrm{n} 084 \geqq \mathrm{n} 085$
If this condition is not satisfied the inverter displays Err for one second and restores the data to original settings.
Note: Gradually changes without
jumping during accel/decel.
\qquad is factory setting.

Starting into a coasting motor

Speed search command
Input terminal function selection ring to ming

DC injection braking at start

To operate coasting motor without trip, use the speed search command or DC injection braking at start.

Speed search command

Restarts a coasting motor without stopping it. This function enables smooth switching between motor commercial power supply operation and inverter operation.
Set input terminal function selection (n050 to n056) to "14" (search command from maximum output frequency) or "15" (search command from set frequency).
Build a sequence so that FWD (REV) run command is input at the same time as the search command or after the search command. If the run command is input before the search command, the search command becomes disabled.

Time chart at search command input

DC injection braking at start (n089, n091)
Restarts a coasting motor after
 stopping it. Set DC injection braking time at start in n091 in units of 0.1 second. Set DC injection braking current in n089 in units of 1%. When the setting of n091 is " 0 ", DC injection braking is not performed and acceleration starts from the minimum output frequency.

Holding accel/decel temporarily

Accel/decel hold command

To hold acceleration, input accel/decel hold command. The output frequency is maintained when the aceel/decel hold command is input during acceleration or deceleration.
The stop command releases the accel/decel hold and the operation ramps to stop while inputting accel/decel hold command.
Set input terminal function selection (n050 to n056) to 16 (accel/decel hold command).

Using frequency meter or ammeter

Analog monitor selection rarible
Selects to output either output frequency or output current to analog output terminals AM-AC for monitoring.

Setting	Description
0	Output frequency
1	Output current

Selecting Method to Stop

Adjusting frequency meter or ammeter

Analog monitor gain rafe 7

Used to adjust analog output gain.

Set analog output voltage at 100% of output frequency (output current).
Frequency meter displays 0 to 60 Hz with a 0 to 3 V change.

Note : Set 1.00 in n067 when using a 10 V full-scale meter.

Reducing motor noise and leakage current

Carrier frequency ring in

Sets inverter output transistor switching frequency (carrier frequency).

Setting	Carrier frequency (Hz)	Metallic noise from motor	Leakage current
1	2.5	Higher	Smaller
2	5.0		
3	7.5		
4	10.0	Not audible	Larger
7 to 9	Synchronized type with lower limit lkHz and upper limit 2.5 Hz	-	-

Carrier frequency initial value differs depending on inverter capacity as follows :

- 10 kHz (setting n080 $=4$) : 200V three-phase 0.1 to 0.75 kW
- 7.5 kHz (setting n080 = 3) : 200V three-phase/single-phase, 1.5 to 7.5 kW 400 V three-phase, all models To change the initial value 7.5 kHz to 10 kHz , continuous output current must be lowered. For details, refer to the instruction manual.

Operator stop key selection

Selects processing when STOP key is depressed during operation from control circuit terminal or communication.

Setting	Description
0	STOP key effective when running from terminals or communication. When STOP key is depressed, the inverter stops according to the setting of constant n005. At this time, the digital operator displays " 5 r P " alarm (blinking). This stop command is held in the inverter until both forward and reverse run commands are open or operation command from communication is "0".
1	STOP key ineffective when running from terminals or communication.

Selecting stopping method

Stopping method selection mibitis

Selects the stopping method suitable for application.

Setting	Description
0	Deceleration to stop
1	Coast to stop

- Deceleration to stop

Example when accel/decel time 1 is selected

- Coast to a stop

Example when accel/decel time 1 is selected

* When frequency reference is changed during running.

Applying DC injection braking
 DC injection braking current
 rints
 DC injection braking time at stop r misyin

When coasting to a stop is 0016 specified in stopping method $\begin{gathered}\text { MIN. OUTPUT } \\ \text { FREQUENCY }\end{gathered}$ selection (n005), DC injection braking at stop does not operate.

\square is factory setting．

Building Interface Circuits with External Devices

Using multi－function input signals

Multi－function input terminals S1 to S7 functions can be changed when necessary by setting constants n050 to n056，respectively．The same value can not be set to different constant setting．
－Terminal S1 function ：Set to n050 ：Factory setting 1
－Terminal S2 function ：Set to n051 ：Factory setting 2
－Terminal S3 function ：Set to n052 ：Factory setting 3
－Terminal S4 function ：Set to n053：Factory setting 5
－Terminal S5 function ：Set to n054 ：Factory setting 6
－Terminal S6 function ：Set to n055：Factory setting 7
－Terminal S7 function ：Set to n056 ：Factory setting 10

Setting	Function Name	Description	Ref．
0	FWD／REV run command （3－wire sequence selection）	Setting enabled only for n052	32
1	FWD run command （2－wire sequence）	－	－
2	REV run command （2－wire sequence）	－	－
3	External fault （NO contact input）	Inverter stops by external fault signal input． Digital operator display is＂$\because=\square$＂	－
4	External fault （NC contact input）		
5	Fault reset	Resets fault．It is disabled with run signal entered．	－
6	Multi－step speed reference 1	－	27
7	Multi－step speed reference 2	－	27
8	Multi－step speed reference 3	－	27
9	Multi－step speed reference 4	－	27
10	Jog command	－	27
11	Accel／decel time select	－	28
12	External baseblock （NO contact input）	Motor coasts to stop by this signal input． Digital operator display ＂回告＂（blinking）．	－
13	External baseblock （NC contact input）		
14	Search command from max． output frequency	Speed search command signal	30
15	Search command from set frequency		
16	Accel／decel hold command	－	30
17	LOCAL／REMOTE selection	－	32
18	Communication／Control circuit terminal selection	－	32
19	Emergency stop fault （NO contact input）	Inverter stops by emergency stop signal input according to stopping method selection（n005）．When frequency deceleration to a stop （n005＝0）is selected，inverter decelerates to a stop according to decel time setting 2 （n022）．Digital operator displays＂5：～＂（lights at fault，blinks at alarm）．	－
20	Emergency stop alarm （NO contact input）		－
21	Emergency stop fault （NC contact input）		－
22	Emergency stop alarm （NC contact input）		－
23	PID control cancel	－	－
24	PID integral reset	－	－
25	PID integral hold	－	－
26	Inverter overheat alert （OH3 alarm）	When the Inverter overheat signal turns ON，a－iヨ （flashing）is displayed at the Digital Operator．	－
27	Acceleration／deceleration time selection 2	－	－
34	UP／DOWN command	Setting is enabled only for n056．	33
35	Self－test	Setting is enabled only for n056．	33
36	UP／DOWN command 2	Setting is enabled only for n056．	－

＊A number 1 to 7 is displayed in \square corresponding to the number of terminal S1 to S 7 respectively．

Terminal function at 3－wire sequence selection

 RUN SW

Note：Set parameters before wiring
LOCAL／REMOTE select（setting ：17）
Select operation reference by the digital operator or by the control circuit terminal．
LOCAL／REMOTE select is valid only during stop．
Open ：Run by setting at run command selection （n003）and frequency reference selection （n004）．
Closed ：Run by frequency reference and run command from digital operator．
eg ：When the digital operator／control circuit terminal selection setting is $n 003=1$ and $n 004=2,3,4$ or 5
Open ：Receives frequency reference（terminal FR， RP ）and run command（terminals S1 to S7 ） from control circuit terminal
Closed ：Receives frequency reference（setting at n008） and run command from digital operator．

Communication／control circuit terminal selection （setting ：18）
Selects operation reference by communication or by control circuit terminal．Communication／control circuit terminal selection is valid only during stop．
Open ：Run according to the setting at n003 and n004 （operation method selection）．
Closed ：Run by frequency reference and run command from communication．
eg ：When used for communication／control circuit terminal selection，set n003 $=1$ and n004 $=2,3$ ， 4 or 5
Open ：Receives frequency reference（terminal FR， FP）and run command（terminals S1 to S7） from control circuit terminal
Closed：Receives frequency reference and run command from communication

UP／DOWN command（setting ：n056＝34）
With the FWD（REV）run command entered， accel／decel is enabled by inputting the UP or DOWN signals to control circuit terminals S6 and S7 without changing the frequency reference，so that operation can be performed at the desired speed．When UP／DOWN commands are specified by n056，any function set to n055 becomes disabled；terminal S6 becomes an input terminal for UP command and terminal S7 for DOWN command．

Control circuit terminal S6（UP command）	Closed	Open	Open	Closed
Control circuit terminal S7（D0WN command）	Open	Closed	Open	Closed
Operation status	Accel	Decel	Hold	Hold

Time chart at UP/DOWN command input

$\mathrm{U}=\mathrm{UP}$ (accelerating) status
$\mathrm{D}=\mathrm{DOWN}$ (decelerating) status
$\mathrm{H}=\mathrm{HOLD}$ (constant speed) status
$\mathrm{U} 1=\mathrm{UP}$ status, clamping at upper limit speed D1 = DOWN status, clamping at lower limit speed

Note : • When UP/DOWN command is selected, the upper limit speed is set regardless of frequency reference.
Upper limit speed $=$ Max. output frequency (n011) \times Frequency reference upper limit (n033) /100

- The lower limit speed is the largest value among min. output frequency (n 016) and frequency reference lower limit (n034).
- When the FWD (REV) run command is input, operation starts at the lower limit speed without UP/DOWN command.
- When the jog command is input while running by the UP/DOWN command, the jog command has priority. The UP/DOWN command can not be input together with multistep speed reference.
- By setting hold output frequency memory selection (n100) to 1 , the output frequency during hold can be saved.

Setting at n100	Description
0	Output frequency during hold is not saved.
1	After 5 sec. of hold state, the output frequency during hold is saved and the operation will restart with the saved output frequency

Self-test (MEMOBUS communication circuit check) (Setting : n056 = 35)
Performs operation check of serial I/F circuit. "CE" is displayed on digital operation at occurrence of fault.
Operation procedures

1. After power ON of the inverter, set multi-function contact input selection (n056) to 35 , shutting down the inverter power supply.
2. Short-circuit between terminal S7 and SC, (R+) and (S+), and (R-) and (S-).
3. Turn SW1 switch on board to NPN side.
4. Power ON the inverter and starts self-test.

After completion of self-test, the digital operator displays frequency reference in normal state. Before starting operation after self-test, turn OFF the power supply to remove the short-circuit leads used at the step 2.

Using multi-function output signals

Multi-function output terminal function selection

Multi-function output terminal MA, MB, P1 and P2 functions can be changed when necessary by setting constants n057, n058 and n059.

- Terminal MA and MB functions : Set to n057
- Terminal P1 and P2 functions : Set to n058 and n059

Setting	Function Name	Description	$\begin{aligned} & \hline \text { Ref. } \\ & \text { Page } \\ & \hline \end{aligned}$
0	Fault	"Closed" (ON) when inverter fault occurs.	-
1	Running	"Closed" (ON) when FWD or REV run command is input, or when the inverter outputs voltage.	-
2	Speed agree	-	Figure below
3	Zero speed	"Closed" (ON) when the inverter output frequency is less than min. output frequency	-
4	Frequency detection 1 (output frequency \geqq frequency detection level)	-	29
5	Frequency detection 2 (output frequency \leq frequency detection level)	-	29
6	Overtorque detection (NO contact output)	-	29
7	Overtorque detection (NC contact output)	-	29
10	Minor fault (alarm display)	-	37
11	During baseblock	"Closed" (ON) when the inverter output is shut off.	-
12	Operation mode	"Closed" (ON) when "LOCAL" is selected by LOCAL/REMOTE selection	-
13	Inverter run ready	"Closed" (ON) when the inverter is ready to operate without any fault.	-
14	In fault retry	"Closed" (ON) during fault retry.	-
15	Low voltage (UV) detected	"Closed" (ON) when the inverter is detecting low voltage.	-
16	In REV run	-	-
17	In speed search	"Closed" (ON) during speed search of inverter.	30
18	Data output from communication	By command from MEMOBUS communication, multi-function output terminal is operated independently from the inverter operation.	-

Factory settings: $\mathrm{n} 057=0, \mathrm{n} 058=1, \mathrm{n} 059=2$

Setting example of "Speed agree signal" (setting = 2)
\square is factory setting.

Adjusting Motor Torque

Adjusting torque according to application

Max. output frequency
rin it
Max. voltage
Mint
Max. voltage output frequency rin f
Mid. output frequency

Mid. output frequency voltage
Min. output frequency rin 5 Min tr
Min. output frequency voltage Torque compensation gain nif it \square ribl

Adjust motor torque by using "V/f pattern" and "fullrange automatic torque boost".

V/f pattern setting

Set V/f pattern by n011 to n017 as described below. Set each pattern when using a special motor (high-speed motor, etc.) or when requiring special torque adjustment of machine. Refer to the instruction manual for details of setting.

$\begin{gathered} \text { V: VOLT } \\ \text { n012 } \\ \text { n015 } \\ \text { n017 } \\ 0 \end{gathered}$		Be sure to satisfy the following conditions for the setting of n011 to n017. $\mathrm{n} 016 \leqq \mathrm{n} 014<\mathrm{n} 013 \leqq \mathrm{n} 011$ If $\mathrm{n} 016=\mathrm{n} 014$ is set, the set value of n 015 is disabled. CY		
$\begin{gathered} \text { Constant } \\ \text { No. } \end{gathered}$	Name	Unit	Setting Range	Factory Setting
n011	Max. output frequency	0.1 H	50.0 to 400 Hz	60.0 H
n012	Max. voltage	0.1 V	0.1 to 255 V	200 V
n013	Max. voltage output frequency (base frequency)	0.1 Hz	0.2 to 400 Hz	60.0 Hz
n014	Mid. output frequency	0.1 Hz	0.1 to 399 Hz	1.5 Hz
n015	Mid. output frequency voltage	0.1 V	0.1 to 255 V	12V*1, *2
n016	Min. output frequency	0.1 Hz	0.1 to 10.0 Hz	1.5 Hz
n017	Min. output frequency voltage	0.1 V	0.1 to 50 V	12V*1,*2

*1 Twice for 400 V class.
*2 10.0 V for inverters of 5.5 kW and 7.5 kW in the $200-\mathrm{V}$ class. 20.0 V for inverters of 5.5 kW and 7.5 kW in the $400-\mathrm{V}$ class.

Full-range automatic torque boost

Motor torque requirement changes according to load conditions. Full-range automatic torque boost adjusts voltage of V/f pattern according to the requirement. The VS-606V7 automatically adjusts the voltage during constant-speed operation as well as during acceleration. The required torque is calculated by the inverter.
Normally, no adjustment is necessary for torque compensation gain (n103 factory setting $=1.0$). When the wiring distance between the inverter and the motor is long, or when the motor generates vibration, change the torque compensation gain. In these cases, reset the V/f pattern (n011 to n017).

Preventing motor from stalling (Current limit)

Stall prevention (current limit) level during accel rin

Stall prevention during decel

Stall prevention (current limit) level during accel (n093)
Automatically adjusts the output frequency and the output current according to the load to continue operation without stalling the motor.
During acceleration if the output current exceeds 170% of the inverter rated current [the value set for n093], acceleration stops and the frequency is maintained.
When the output current goes down to 170% [the value set for n093], acceleration starts. Inverter rated current equals 100%.

*: Holds the acceleration to prevent the motor from stalling.
Factory setting of n093 $=170 \%$
When set to 200%, this function becomes disabled.

In the constant output area [output frequency \geqq max. voltage output frequency (n013)], the stall prevention level during acceleration is automatically decreased by the following equation.

Stall prevention (current limit) level during

 accel in constant output area$=170 \%[$ n093 setting $] \times \frac{\text { Max. voltage output frequency (n013) }}{\text { Output frequency }}$

Stall prevention (current limit) level during running
During agreed speed if the output current exceeds 160% of the inverter rated current [the value set for n094], deceleration starts.
When the output current exceeds 160% [the value set for n094], deceleration continues.
When the output current goes down to the value, acceleration starts, up to the set frequency.

*1. Decreases frequency to prevent the motor from stalling
*2. If the output current does not become set level or less, the operation will be held at the min. output frequency.

Factory setting of n094 $=160 \%$
When set to 200%, this function becomes disabled. \square
Stall prevention (current limit) during deceleration (n092)
To prevent overvoltage during deceleration, the inverter automatically extends the deceleration time according to the value of main circuit DC voltage.
When using an optional braking resistor, set n092 to 1 .

Setting	Stall prevention during deceleration
0	Provided
1	Not Provided (when braking resistor mounted)

Improving Motor Speed Regulation

Slip compensation

Slip compensation gain \quad ח itic

As the load becomes larger, the motor speed is reduced and motor slip value is increased when V/f control mode is selected.
The slip compensating function controls the motor speed at a constant value even if the load varies. When inverter output current is equal to the motor rated current, compensation frequency is added to the output frequency.

Compensation frequency $=$ Motor rated slip value (n106)

$\times \frac{\text { Output current }- \text { Motor no-load current }(\mathrm{n} 110)}{$| Motor rated |
| :--- |
| current $(\mathrm{n} 036)$ |$-$| Motor no-load |
| :--- |
| current $(\mathrm{n} 110)$ |}

\times Slip compensation gain $(\mathrm{n} 111)$
\times Slip compensation gain (n111)
Constants

Constant No.	Function Name	Setting Unit	Setting Range	Factory Setting
n036	Motor rated current	0.1 A	0 to 150% of inverter rated current	$*$
n106	Motor rated slip	0.1 Hz	0.0 to 20.0 Hz	$*$
n111	Slip compensation gain	0.1	0.0 to 2.5	0.0
n110	Motor no-load current	1%	0 to $99 \% ~(100 \% ~$ motor rated current n036)	$*$
n112	Slip compensation primary delay time	0.1 s	0.0 to 25.5 s When 0.0 s is set, delay time becomes 2.0 s	2.0 s

* Differs depending on inverter capacity.

Notes : • When output frequency < min. output frequency (n016), slip compensation is not performed.

- During regenerative operation, slip compensation is not performed.
- When vector control mode is selected, slip compensation is performed with slip compensation selection (n113) during regenerative operation.

Motor Protection

Motor overload detection

Motor rated current

nG킁
Electronic thermal motor protection selection r n

The VS-606V7 protects against motor overload with a built-in electronic thermal overload relay.

Motor rated current (electric thermal base current) (n036) Set to the rated current value shown on the motor nameplate.
Motor overload protection selection (n037)

Setting	Electronic Thermal Characteristics
0	For standard motor
1	For inverter motor
2	Electronic thermal motor protection not provided

Motor overload protection selection (n037)
The initial value is 8 min . of standard rating (Set 5 min. rating for short-term rating).
When operating with one inverter connected to one motor, an external thermal relay is not required.
When operating several motors with one inverter, install a thermal relay on each motor.

Standard motors and inverter motors

Motors are classified into standard motors and inverter motors according to its cooling capabilities. Therefore, the motor overload function operates differently between motor types.

	Cooling Effect	Torque Characteristic	Electronic Thermal
\%	Since designed for operation with commercial power supply, cooling effect is lowered as speed lowered.	 BASE FREQUENCY 60 Hz (V/f for $60 \mathrm{~Hz}, 220 \mathrm{~V}$ input voltage) As the motor temperature rise is controlled at low-speed operation, the load should be limited.	"OL1" error (motor overload protection) occurs when continuously operated at $50 / 60 \mathrm{~Hz}$ or less at 100% load.
¢	Designed for heatresistant in case of lowered cooling capability in lowspeed range (approx. 6Hz).	 BASE FREQUENCY 60 Hz (V/f for $60 \mathrm{~Hz}, 220 \mathrm{~V}$ input voltage) For continuous operation in low-speed range, use inverter motors.	Electric thermal overload protection not activated even when continuously operated at $50 / 60 \mathrm{~Hz}$ or less at 100% load.

Controlling by MEMOBUS Communication

VS-606V7 can perform serial communication by using a programmable controller (PLC) and MEMOBUS communication. MEMOBUS is composed of one master PLC and 1 to 31 (max.) slave units (VS-606V7).
In signal transmission (serial communication) between the master and slaves, the master always starts transmission and the slaves respond to it.
The master performs signal transmission with one slave at one time. Therefore address numbers are assigned to each slave in advance and the master specifies a number to perform signal transmission. The slave which receives the command from the master executes the function and returns the response to the master.

Communication Specifications

- Interface
: RS-485/422
- Synchronization : Asynchronous (start-stop)
- Transmission parameter : Baud rate : Selectable from 2400, 4800, 9600, 19200 bps (constant n154)
Data length : Fixed to 8 bits
Parity : Parity/no-parity, even/odd selectable (constant n155)
Stop bit : Fixed to 1 bit
- Protocol : In accordance with MEMOBUS
- Maximum number of units to be connected : 31 units (when RS-485 is used)

Data to be Sent/Received by Communication

Data to be sent/received by Communication are run commands, frequency reference, fault contents, inverter status and constant setting/reading.

Operation Mode Selection (n003, n004)
Select the run command and frequency reference input method in constant n003 and n004. To provide a run command and frequency reference by communication, set n003 and n004 to 2 and 6 respectively. Also, without regard to this selection, monitoring of running status, constant setting/reading, fault reset and multi-function input command from the PLC are enabled. The multifunction input command becomes OR with the command input from control circuit terminals S1 to S7.

MEMOBUS Frequency Reference Unit (n152)
The frequency reference units from the PLC and the frequency reference and output frequency monitors (by communication) are selected.
The output frequency resolution of the VS-606V7 is 0.01 Hz .

MEMOBUS Slave Address (n153)
The slave address number is set. it is necessary to set the address number so that it will not overlap with the address number of another slave connected on the same transmission line.
Note: To change the values set in constants n153 to n157 and enable new setting, it is necessary to turn OFF the power supply, and then turn it ON again.

			$-O_{1}^{-}: \text {Ol }$	$\stackrel{\text { Ol }}{\text { ॥ }}: \text { BLINKING } \quad: \text { OFF }$
Alarms and Corrective Actions				
Alarm Display		Inverter Status	Explanation	Causes and Corrective Actions
Digital Operator	RUN (Green) ALARM (Red)			
BLINKING			UV (Main circuit low voltage) Main circuit DC voltage drops below the low-voltage detection level while the inverter output is OFF. Detection level 200 V class : Approx. 200V or less (for single-phase, approx. 160 V or less) 400 V class : Approx. 400 V or less Control power fault : Control power fault detected while inverter stopped.	Check the following : - Power supply voltage - Main circuit power supply wiring is connected. - Terminal screws are securely tightened.
$\begin{gathered} \text { EI! } \\ \text { BLINKING } \end{gathered}$			OV (Main circuit overvoltage) Main circuit DC voltage exceeds the overvoltage detection level while the inverter output is OFF. Detection level 200 V class : Approx. 410 V or more 400 V class : Approx. 820 V or more	Check the power supply voltage.
$\begin{gathered} \text { Eif } \\ \text { BLINKING } \end{gathered}$	$\bigodot^{\prime \prime \prime}$		OH (Cooling fin overheat) Intake air temperature rises while the inverter is stopped.	Check the intake air temperature.
: Fin BLINKING		Warning	CAL (MEMOBUS in waiting) After power ON with n003 (operation mode selection) set to 2 and n004 (frequency reference selection) to 6, normal transmission data is not received from PLC.	Check communication devices and transmission signals.
fㅏㅁ		output fault. Automatically recover after the fault eliminated	OP \square (Constant setting error when setting constants from MEMOBUS) OP1 : Same set values are input to constants n050 to n056 for multi-function input selection. OP2 : Improper size comparison of setting for V/f constants n011, n013, n014 and n016 OP3 : Set value of motor rated current (n036) exceeds 150% of inverter rating. OP4 : Frequency reference upper limit (n033) < Frequency reference lower limit (n034) OP5 : Improper size comparison among jump frequency 1 (n083), 2 (n084) and 3 (n085) OP9 : The setting of the Inverter capacity does not coincide with the Inverter. (Contact your Yaskawa representative.)	Check set value.
$\begin{aligned} & \text { Ei Z } \\ & \text { BLINKING } \end{aligned}$			Inverter output current exceeds overtorque detection level (n098)	Decrease load, increase accel/decel time.
$\begin{aligned} & \text { BLINKING } \\ & =1 \end{aligned}$	-'		SER (sequence error) Inverter received LOCAL/REMOTE selection command signal, or communication/control circuit selection command signal during operation.	Check external circuit (sequence).
$\begin{aligned} & \text { BLINKING } \\ & \text { B } \end{aligned}$			UL3 (undertorque detection) When the V/f mode is selected, the inverter's output current is under the undertorque detection level (n118). When the vector mode is selected, the output current or output torque is under the undertorque detection level (n097 and n118). If undertorque is detected, the inverter operates according to the setting at n 117 .	- Check the setting at n118. - Check the driven machine and correct the cause of the fault.

Alarms and Corrective Actions (Cont'd)

Fault Display		Inverter Status	Explanation	Causes and Corrective Actions
Digital Operator	RUN (Green) ALARM (Red)			
$\frac{1}{6}$			BB (external base blocked) Inverter stops output upon receiving an external base block signal. (Note : Resetting external base block signal restarts operation.	Check external circuit (sequence).
E BLINKING			EF (FWD and REV command simultaneous input) FWD command and REV command from control circuit terminal are simultaneously "Closed". When command is "Closed" for 500 ms and more, inverter stops operation by setting stopping method selection (n005).	Check external circuit (sequence).
与is: BLINKING		Warning	STP (Operator function stop) STOP/RESET key is pressed during running by FWD or REV command from control circuit terminal or communication. In this case, inverter stops operation by setting of stopping method selection (n005). STP (emergency stop) At receiving emergency stop alarm signal, inverter stops operation by setting of stopping method selection (n005).	- Open FWD or REV command from control circuit terminal. - Check external circuit (sequence)
Fs, BLINKING	or	output fault. Automatically	FAN (Cooling fan fault) Cooling fan is locked.	Check the followings : - Cooling fan - Power supply connection of cooling fan
BLINKING		fault eliminated	CE (MEMOBUS communication fault) Communication data are not received normally	Check communication devices and communication signals.
组 BLINKING			FBL (PID feedback loss detection) PID feedback value dropped below the detection level (n137). When PID feedback loss is detected, the inverter operates according to the n 136 setting.	Check the mechanical system and correct the cause, or increase the value of $n 137$.
Einis BLINKING			Option card communications fault. Communication fault has occurred in a mode that RUN command and frequency reference are set from the communication option card.	Check the communications devices or communications signals.
EAG BLINKING			OH3 (inverter overheating alarm signal) An OH3 alarm signal (inverter overheating alarm signal) was input from a multi-function input terminal (S1 to S7)	Change the setting to stop the OH 3 alarm signal from being sent.

Faults and Corrective Actions

Fault Display		Inverter Status	Explanation	Causes and Corrective Actions
Digital Operator	RUN (Green) ALARM (Red)			
E18			OC (overcurrent) Inverter output current momentarily exceeds approx. 250% of rated current.	- Short-circuit or grounding at inverter output side - Excessive load GD ${ }^{2}$ - Extremely rapid accel/decel time (n019 to n022) - Special motor used - Starting motor during coasting - Motor of a capacity greater than the inverter rating has been started. - Magnetic contactor open/closed at the inverter output side Check the cause, and restore the operation. Note: Before turning the power ON again, make sure that no short-circuit or ground fault occurs at the Inverter output.
R15			GF (Grounding) $* 1 * 2$ Grounding current exceeded approx. 50% of inverter rated output current at the inverter output side.	Inverter output grounded. Check the cause, and restore the operation. Note: Before turning the power ON again, make sure that no short-circuit or ground fault occurs at the Inverter output.
E			SC (Load shortcircuit) *1 Inverter output or load shortcircuited.	Inverter output shortcircuited or grounded. Check the cause, and restore the operation.
E100	\bigcirc	Protective Operation	OV (main circuit overvoltage) Main circuit DC voltage exceeds the overvoltage detection level due to excessive regenerative energy from the motor. Detection level 200V class : approx. 410 V and more 400 V class : approx. 820 V and more	- Insufficient decel time (constants n020 and n022) - Large minus load at lowering (elevator, etc.) - Increase decel time. - Connect optional braking resistor.
Efind	$-$	Output is shut OFF and motor coasts to a stop.	UV1 (main circuit low-voltage) Main circuit DC voltage drops below the low-voltage detection level while inverter output is ON. Detection level 200V class : approx. 200V and less (approx. 160 V and less for single-phase) 400 V class : approx. 400 V and less	- Reduction of input power supply voltage - Open phase of input supply - Occurrence of momentary power loss Check the following: - Power supply voltage - Main circuit power supply wiring is connected - Terminal screws are securely tightened.
Eforiz			UV2 (control power supply fault) Voltage fault of control power supply is detected.	Turn OFF, and ON power. If the fault remains, replace the inverter.
Eif			OH (cooling fin overheat) Temperature rise due to inverter overload operation or intake air temperature rise.	- Excessive load - Improper V/f pattern setting - Insufficient accel time if the fault occurs during acceleration - Intake air temperature exceeding $50^{\circ} \mathrm{C}$ - Cooling fan is stopped. - Cooling fan deteriorates its cooling capability or stops. - Fin is clogged. - There is a thermal source around the inverter Check the following: - Load size - V/f pattern setting (n011 to n017) - Intake air temperature - Cooling fan is turning while the inverter is running. - Any foreign matters adhere to the fan and that they do not interrupt the rotation. -Fan is mounted properly. - There is not a thermal source around the inverter.

* 1 : Only for inverters of 5.5 kW and 7.5 kW (200-V and 400-V classes).
*2 : The ground fault here is one which occurs in the motor wiring while the motor is running.
A ground fault may not be detected in the following cases.
- A ground fault with low resistance which occurs in motor cables or terminals.
- A ground fault occurs when the power is turned ON.

Faults and Corrective Actions（Cont＇d）

Fault Display		Inverter Status	Explanation	Causes and Corrective Actions
Digital Operator	RUN（Green） ALARM（Red）			
－H		Protective Operation Output is shut OFF and motor coasts to a stop．	RH（Externally－mounting－type braking resistor overheat）＊ Protection of externally－mounting type braking resistor operated．	－Insufficient deceleration time －Excessive motor regenerative energy －Increase deceleration time －Reduce regenerative load
Eí			OL1（motor overload） Motor overload protection activated by built－in electronic thermal overload relay．	－Check the load size and V／f pattern setting（n011 to n017） －Set n036 to the rated current on motor nameplate．
二瓦里			OL2（inverter overload） Inverter overload protection activated by built－in electronic thermal overload relay．	－Check the load size and V／f patter setting （n011 to n017） －Check the inverter capacity
Ei $]^{\prime}$			OL3（overtorque detection） When V／f mode is selected，inverter output current exceeds the overtorque detection level（n098）． When Vector mode is selected，output current or output torque exceeds overtorque detection level（n097 and n098）． If overtorque is detected，inverter operates according to the setting at n096．	Check the driven machine and correct the cause of the fault，or increase the value of n098 up to the highest allowable value for the machine．
：	-1		PF（main circuit voltage fault） Main circuit voltage oscillates，except during regeneration．	－Open phase of input supply －Occurrence of momentary power loss －Excessive change in input supply voltage －Imbalance in line voltage Check the following： －Main circuit power supply wiring －Power supply voltage －Terminal screws are securely tightened．
			LF（output open phase） An open phase occurred at the inverter output side．	－Disconnection of output wiring． －Disconnection of motor wiring． －Output terminal screws are loose． Check the following： －Output wiring． －Impedance of motor －Output terminal screws are securely tightened．
： 18			UL3（undertorque detection） When the V／f mode is selected，the inverter＇s output current is under the undertorque detection level（ n 118 ）． When the vector mode is selected，the output current or output torque is under the undertorque detection level（n097 and n118）． If undertorque is detected，the inverter operates according to the setting at n117．	－Check the setting at n118． －Check the driven machine and correct the cause of the fault．
$E \square \square$			$\mathrm{EF} \square$（external fault） Received an external fault signal． EF0 ：External fault command from MEMOBUS EF1 ：External fault input from control circuit terminal S1 EF2 ：External fault input from control circuit terminal S2 EF3 ：External fault input from control circuit terminal S3 EF4 ：External fault input from control circuit terminal S4 EF5 ：External fault input from control circuit terminal S5 EF6 ：External fault input from control circuit terminal S6 EF7 ：External fault input from control circuit terminal S7	Check external circuit（sequence）．

＊：Only for Inverters of 5.5 kW and 7.5 kW （200－V and 400－V classes）．

Faults and Corrective Actions（Cont＇d）

Fault Display		Inverter Status	Explanation	Causes and Corrective Actions
Digital Operator	RUN（Green） ALARM（Red）			
Figig	$\begin{gathered} \bullet \\ -O_{1}^{\prime} \end{gathered}$	Protection Operation Output is shut OFF and motor coasts to a stop．	CPF－00（CPF ：control circuit fault） Communication with digital operator is disabled even 5 sec ． after power is ON．	Turn OFF power and check the mounting of digital operator，then turn ON power again． If fault remains，replace the digital operator or the inverter．
Fif			CPF－01 Communication fault occurs for 5 sec ．or more after communication started with digital operator	Turn OFF power and check the mounting of digital operator，then turn ON power again． If fault remains，replace the digital operator or the inverter．
Fi8			CPF－04 EEPROM fault of inverter control circuit	－Save all the constant data，then initialize the constants（refer to page 19 for initialization of constants） －Turn OFF power，then ON again． If the fault remains，replace the inverter．
－			CPF－05 A／D converter fault of inverter control circuit	Turn OFF power，and ON again．If fault remains，replace the inverter．
－88			CPF－06 －Optional card connection fault －Non－applicable option card is connected．	－Turn OFF power and properly connect the card，then turn ON power． －Check the inverter software NO（n179）．
Fif			CPF－07 Digital operator control circuit（EEPROM，A／D converter fault	Turn OFF power once and check the mounting of digital operator，then turn ON power again． If fault remains，replace the digital operator or the inverter．
F ：			CPF－11 Combination error	Control circuit is not combined with correct software． （Contact your Yaskawa representative．）
ロバー			OPR（digital operator connection fault）	Turn OFF power，and properly connect the digital operator，then turn ON power．
自			CE（MEMOBUS fault） Communication data cannot be received properly．	Check communication device and signals．
Sir		Stops according to constant setting	STP（emergency stop） At receiving an emergency stop fault signal，inverter stops output by setting stopping method selection（n005）	Check external circuit（sequence）．
OFF	\bullet	Protective Operation Output is shut OFF and motor coasts to a stop．	－Insufficient power supply voltage －Control power supply fault －Hardware fault	Check the following： －Power supply voltage －Main circuit power supply wiring －Terminal screws are securely tightened． －External control circuit（sequence） －Replace the inverter

Inverter

Selection

■ Use a DC reactor (option) or an AC reactor (option) on the inverter power side when the inverter is connected directly to a large-capacity power transformer (600 kVA and over within 10 m distance) or when a phase advance capacitor is switched. Otherwise excess peak current may occur in the power feed circuit and the converter section may be damaged. A DC reactor or an AC reactor is also required when a thyristor converter such as a DC drive is connected to the same power system.

- When a special motor is used or more than one motor is driven in parallel with a single inverter, select the inverter capacity so that 1.1 times of the total motor rated current does not exceed the inverter rated output current.
- The starting and accelerating characteristics of the motor driven by an inverter are restricted by the overload current ratings of the inverter. Compared to running with commercial power supply, lower torque output should be expected. If high starting torque is required, use an inverter of higher capacity or increase the capacities of both the motor and the inverter.
- When an error occurs, a protective circuit is activated and the inverter output is turned OFF. However, the motor cannot be stopped immediately. Use a mechanical brake and hold the equipment for a fast stop if necessary.
- Terminals B1 and B2 are for YASKAWA options. Do not connect equipment other than braking resistor (option). And the terminals +1 and +2 are for YASKAWA options. Do not connect equipment other than DC Reactor (option).

Installation

- Avoid oil mist or dust. Place the inverter in a clean area or house it in a totally-enclosed case so that no contamination enters. To use the totally-enclosed case, select the cooling method and panel dimensions so the inverter ambient temperature will be within the allowable range.
- Do not install the inverter on flammable material, such as wood.

■ Install the inverter on a wall with the longer side in the vertical position.

Setting

■ The inverter can be driven at an output frequency of up to 400 Hz with the digital operator. Setting errors may create a dangerous situation. Set the upper limit with the upper limit frequency setting function. (Maximum output frequency in external input signal operation is preset to 60 Hz at the factory.)

- Large DC injection braking operating voltages and times may cause motor overheating.

■ Motor accel/decel time is determined by the motor generating torque, load torque, and load inertia $\mathrm{WK}^{2}\left(\mathrm{GD}^{2}\right)$. If the stall prevention function is activated during accel/decel, set the accel/decel time longer. After the stall prevention function is activated, the accel/decel time is extended to a length that the inverter can handle. To shorten the accel/decel time, increase the capacity of the inverter and possibly the motor.

Operation

- Never connect the AC main-circuit power supply to output terminals U/T1, V/T2, W/T3, B1, B2,,-+1 , or +2 . The inverter will be damaged. Double check wiring and sequence before turnig the power ON.
- If magnetic contactor (MC) is used on the primary side of the inverter, do not use the MC for starting and stopping the inverter. Otherwise, the inverter life may be reduced.
- After turning power to the inverter OFF, electric charges in the internal capacitors are retained temporarily. Wait until the charge LED goes off before touching the inside of the inverter.
- Do not subject the inverter to halogen gases, such as fluorine, chlorine, bromine, and iodine, at any time even during transportation or installation.

Installation and selection of molded-case circuit breaker

On the input power side, a molded-case circuit breaker (MCCB) to protect inverter primary wiring should be installed. The inverter power-factor (depending on power voltage, output frequency, and load) must be taken into account for selecting MCCB. For standard settings, see page 38. If a full electromagnetic MCCB is to be used, select a larger capacity because the operating characteristics are altered by harmonic current. A leakage current breaker threshold of 200 mA and above, or of inverter (suppressing high frequency) use is recommended.

Input side magnetic contactor

The inverter can be used without an input side magnetic contactor (MC). An input MC can be used to prevent an automatic restart after recovery from an external power loss during remote control operation. However, do not use the MC frequently for start/stop operation, or it will lead to a reduced reliability. When the digital operator is used, automatic restart after power failure is disabled so that MC starting is impossible. Although the MC can stop the inverter, regeneration braking is disabled and the motor coasts to a stop. When braking resistor unit is used, build a sequence where MC is turned OFF at the braking resistor unit thermal relay contact.

Secondary magnetic contactor

In general magnetic contactors on the output of the inverter, for motor control should not be used. Starting a motor with the inverter running will cause large surge currents and the inverter overcurrent protector to trigger. If an MC is used for switching to commercial power supply, switch MC after the inverter and the motor stop. To switch during motor rotation, use the speed search function. (See page 27.)

Overload relay

The inverter includes an electronic thermal protective function to protect the motor from overheating. But, when multi-drive by one inverter is used, place a overload relay between the inverter and the motor. Set 2 in n037 (or set 0.0 in n036), and set the overload relay to the current nameplate value at 50 Hz , or 1.1 times of that at 60 Hz .

Power-factor improvement (eimination of phase advance capacitor)

To improve the power-factor, install a DC reactor or an AC reactor on the inverter power side. Power-factor improvement capacitor or surge suppressors on the inverter output side will be damaged by the harmonic component in the inverter output. Also, the overcurrent caused in the inverter output will trigger the overcurrent protection. To avoid this, do not use capacitors or surge suppressors in the inverter's output. To improve the power-factor, install an AC reactor on the inverter primary side.

Radio frequency interference

Because the inverter I/O (main circuit) contains a higher harmonics component, it may emit RFI noise to communication equipment (AM radio, etc.) near the inverter. Use a noise filter to decrease the noise. Use of a metallic conduit between the inverter and motor and grounding the conduit is also effective. Proper routing of input and output lead is also recommended.

Wire thickness and cable length

If a long cable is used between the inverter and a motor (especially when low frequency is output), motor torque decreases because of voltage drop in the cable. Use sufficiently thick wire. If a long cable is used and inverter carrier frequency (main transistor switching frequency) is high, harmonic leakage current from the cable will increase to affect the inverter unit or peripheral devices. Reduce the inverter carrier frequency.
When a digital operator is to be installed separately from the inverter, use the YASKAWA remote interface and special connection cable (option). For remote control with analog signals, connect the operating signal terminal and the inverter within $98.4 \mathrm{ft}(30 \mathrm{~m})$ of the inverter. The cable must be routed separately from power circuits (main circuit and relay sequence circuit) so that it is not subjected to inductive interference by other equipment. if frequencies are set not only from the digital operator but also with external frequency controller, use twisted-pair shielded wire as shown in the following figure and connect the shielding to terminal \ominus.

Noise Control Measures

The low-noise type uses high-carrier frequency PWM control, and compared to the low-carrier type tends to suffer from increased electromagnetic interference (EMI). Following are suggestions that may be effective in reducing EMI effects in your installation:

- Lower the carrier frequency (constant n080) and the interference will be reduced.
- A line noise filter is effective in eliminating sensor malfunction or AM radio static (see page 41).
-To eliminate inductive noise from the inverter power line, separate the signal lines [recommended $30 \mathrm{~cm}(11.8 \mathrm{in})$, minimum 10 cm (3.94in)] and use twisted-pair shielded cable.

From the JEMA report

Current Leakage Control Measures

A floating capacitance exists between the inverter power line and other drive lines, and between ground (earth) and the motor. This may carry high-frequency leakage current and affect other equipment. This phenomenon varies with the carrier frequency and the wiring distance between inverter and motor. The following measures may help to minimize the effects.

	Characteristics	Corrective Actions
Current Leakage to Ground (earth)	Malfunction of ground fault interrupters and leakage relays	• Lower the carrier frequency (constant n080) - Use a ground fault interrupter resistant to high frequencies (e. g. Mitsubishi Electric NV Series)
Inter-line Leakage Current	Malfunction of external thermal overload relays due to high-frequency component of leakage current	• Lower the carrier frequency (constant n080) - Use an inverter with a built-in electronic thermal overload relay.

Wiring distance between inverter and motor, and setting of carrier frequency

Wiring Distance	Up to $50 \mathrm{~m}(164.0 \mathrm{ft})$	Up to $100 \mathrm{~m}(328.1 \mathrm{ft})$	More than $100 \mathrm{~m}(328.1 \mathrm{ft})$
Allowable carrier frequency (Constant n080 set value)	10 kHz or less (1 to $4,7,8,9)$	5 kHz or less $(1,2,7,8,9)$	2.5 kHz or less
$(1,7,8,9)$			

Application for Existing Standard Motors

A standard motor driven by the inverter generates slightly less power than it does when it is driven with commercial power supply.
Also, the cooling effect deteriorates in low speed range so that the motor temperature rise increases. Reduce load torque in the low speed range. Allowable load characteristics of the standard motor are shown in the figure. If 100% continuous torque is required in the low speed range, use an inverter duty motor.
Also, if input voltage is high (440 V or more) or wiring distance is long, consider the withstand voltage of the motor. For details, contact your YASKAWA representative.

Allowable Load Characteristics of a Standard Motor

- High speed operation

When the motor is used above 60 Hz , the motor mechanical design should be verified. Contact your motor manufacturer.

-Torque characteristics

Motor torque characteristics vary when the motor is driven by an inverter instead of commercial power supply. Check the load torque characteristics of the machine to be connected.

- Vibration

Because of the high carrier modulation technique for PWM control, the VS-606V7 reduces motor vibration to a level equal to running with a commercial power supply. Larger vibrations may occur under the following conditions:

- Response at resonant frequency of the mechanical system.

Special care is required if a machine which has previously been driven at a constant speed, is to be driven at varying speeds. Installation of antivibration rubber padding under the motor base and prohibited frequency control are recommended.

- Rotator residual imbalance

Special care is required for operation at frequencies higher than 60 Hz .

\square Noise

Inverter operation is as quiet as operation with commercial power supply: At above rated speed $(60 \mathrm{~Hz})$, noise may increase by motor cooling fan.

Application for Special Purpose Motors

Synchronous Motors	Contact your YASKAWA representative for selecting inverter since starting current and rated current is larger than those of standard motor. Be careful when several motors are turned ON and OFF individually at group control. They may step out.
Pole Change Motors	Select the inverter with a capacity exceeding the rated current of each pole. Pole change should be made only after the motor stops. If a pole changed while the motor is rotating, the regenerative overvoltage or overcurrent protection circuit is activated and the motor coasts to a stop.
Submersible Motors	Since the rated current of underwater motors is large compared with general purpose motors, select an inverter with a larger capacity. If the wire length between the inverter and the motor is large, use cables with sufficiently large diameter.
Explosion-proof Motors	Explosion-proof motors which are applied to an inverter must be approved as explosion-proof equipment. The inverter is not explosion-proof and should not be located where explosive gases exist.
Geared Motors	Lubrication method and continuous rotation limit differ with manufacturers. When oil lubrication is employed, continuous operation only in low speed range may cause burnout. Before operating the motor at more than 60Hz you should consult the motor manufacturer.
Single-phase Motors	Single-phase motors are not suitable for variable speed operation with an inverter. If the inverter is applied to a motor using a capacitor stack, a high harmonic current flows and the capacitor may be damaged. For split-phase start motors and repulsion start motors, the internal centrifugal switch will not be actuated and the starting coil may be burned out. Therefore, use only 3-phase motors. Single-phase models provide a three-phase output (for three-phase motors). They cannot drive single-phase motor.

Power Transmission Mechanism (Gear Reduction, Belt, Chain, etc.)

When gear boxes and change/reduction gears lubricated with oil are used in power transmission systems, continuous low speed operation decreases the oil lubrication function. Also, operation at more than 60 Hz may result in noise, reduced life, etc.

OPTIONS AND PERIPHERAL UNITS

Purpose	Name	Model (Parts Code No.)	Description	$\begin{aligned} & \text { Ref. } \\ & \text { Page } \\ & \hline \end{aligned}$	
Protection of inverter wiring	Molded-case circuit breaker (MCCB) or ground fault interrupter	$N F \square$	To protect inverter wiring, always install it on the power supply side. Use a ground fault interrupter with resistance to high frequencies.	47	
Preventing damage to braking resistor	Magnetic contactor	SC series	If a braking resistor is used, install so as to protect it from burn-out. Always use a surge suppressor on the coil.	47	Circuit Breaker
Preventing output of open/close surge current	Surge suppressor	DCR2- \square	Absorbs surge current by opening and closing of magnetic contactors and control relays. Must be installed on magnetic contactors or control relays near the inverter.	47	or Leakage Breaker
Isolation of I/O signals	Isolator	DGP \square	Isolates the inverter input and output signals to reduce noise.	48	
Improvement of	AC reactor	UZBA-B	When the inverter input power factor is to be improved, mount on the input side.	50	
	DC reactor	UZDA-A	With large-capacity power supplies (600 kVA or higher), install an AC reactor.	49	
	Input noise filter	LNFB- \square [Single-phase] LNFD- [3-phase] \square	Reduces noise through the inverter input power system or wirings. Install as close to the inverter as possible.	52	Power Factor Improvement AC Reactor
Reducing effects of radio and controller noise	Finemet zero-phase reactor to reduce radio noise	$\begin{aligned} & \text { F6045GB } \\ & \text { (FIL001098) } \\ & \text { F11080GB } \\ & \text { (FIL001097) } \end{aligned}$	Reduces noise from the line that sneaks into the inverter input power system. Insert as close to the inverter as possible. Can be used on both the input side and output side.	51	
	Output noise filter	LF- \square	Reduces noise as the inverter output wirings. Install as close to the inverter as possible.	53	
Stopping 1	Braking resistor	$\begin{aligned} & \text { ERF-150WJ } \square \square \\ & \text { (ROO } \square \square \square \square) \end{aligned}$	Motor regenerative energy consumption by the resistor allows reduced decel time (duty cycle: 3\% ED).	54	
within specified time	Braking resistor unit	LKEB- \square	Motor regenerative energy consumption by the resistor allows reduced decel time (duty cycle: $10 \% \mathrm{ED}$). Thermal relay for protection built in.	54	Braking Resistor
	Digital operator for remote operation	$\begin{aligned} & \text { JVOP-144 } \\ & \text { JVOP-146 } \end{aligned}$	Use in combination with the remote interface for remote operation.	53	Input Noise NTIN
	Cable for remote	$\begin{gathered} \text { (WV001) } \\ 1 \mathrm{~m} \end{gathered}$	Use to control digital operator when using		Filter \square
Operating inverter externally	interface	$\begin{gathered} \text { (WV003) } \\ 3 \mathrm{~m} \\ \hline \end{gathered}$	remote interface.	53	
	Blank cover for remote interface	CVST31060	Use together with digital operator for remote operation.	53	
	Operator attachment	EZZ08386A	Insert the digital operator of the inverter (JVOP-140, 147) in this attachment to use it as remote operator (equivalent to JVOP-144, 146).	53	VS-606 V7
	MECHATROLINK communication interface unit	SI-T/V7	Used as interface unit when performing MECHATROLINK communication with host controller.	56	
	Inverter for DeviceNet communications	$\begin{aligned} & \hline \text { CIMR-V7 } \\ & \text { NA } \end{aligned}$	Used when performing DeviceNet communication with host controller.	58	
Connecting inverter with	CC-Link communication interface unit	SI-C/V7	Used as interface unit when performing CC-Link communication with host controller.	56	Power Factor
field network	Inverter for CC-Link communication	$\begin{aligned} & \text { CIMR-V7 } \\ & \text { DA } \square \square \square \square \end{aligned}$	Used when performing CC-Link communications with host controller. (No models currently available for $5.5-\mathrm{kW}$ and $7.5-\mathrm{kW}$ motors.)	58	 DC Reactor
	Profibus-DP communication interface unit	SI-P1/V7	Used as interface unit when performing Profibus-DP communication with host controller.	56	
Using instead of each individual digital operator	Blank cover	CVST31059	Mounted instead of a digital operator when constant setting or run command with a operator is not necessary, such as group drives.	-	
Simple mounting of inverter on control board inside the enclosure	DIN rail mounting attachment	 (EZZ08122A) [W-length: 68mm] (EZZ08122B) [W-length: 108 mm] (EZZ08122C) [W-length: 14 mm] (EZZ08122D) [W-length: 170 mm]	Attachment to mount inverter on DIN rail. Attach to rear of inverter.	-	
Replacing with PC3 series inverter	PC3 series replacing attachment	(EZZ0811■口)	Attachment to install in the same way as VS-606 PC3 series. Attach to rear of inverter.	59	
	Frequency meter	DCF-6A			-
External setting and	Frequency setter	RH000739	Used to set and monitor frequency externally.	55	-
monitoring o frequency an	Frequency setting knob	CM-3S			-
	Output voltmeter	SCF-12NH	Used to monitor output voltage. The voltmeter can be used only with PWM inverters.	55	
Frequency reference input, and calibration of frequency meter and ammeter scales	Frequency meter adjusting potentiometer	RH000850	Used to calibrate frequency meter and ammeter scales.	55	$\frac{1}{\overline{-}}$ Grounding

*: When using a ground fault interrupter, select one not affected by high frequencies. To prevent malfunctions,
the current should be 200 mA or more and the operating time 0.1 s or more.
Recommended ground fault interrupters:

- NV series by Mitsubishi Electric Co., Ltd.
- EG, SG series by Fuji Electric Co., LTD.

Molded-case Circuit Breaker (MCCB) and Magnetic Contactor (MC)

Molded-case Circuit Breaker (MCCB) [Mitsubishi Electric Corporation]

Power Supply Magnetic
Contactor (MC)
[Fujij Electric FA Components \& Systems Co., Ltd.]

Motor Capacity kW	VS-606 V7 Model CIMR-V7 \square A	Molded-Case Circuit Breaker (MCCB)				Magnetic Contactor (MC)			
		Without Reactor		With Reactor		Without Reactor		With Reactor	
		Model	Rated Current A						
0.1	20P1	NF30	5	NF30	3	SC-03	11	SC-03	11
0.2	20P2	NF30	5	NF30	3	SC-03	11	SC-03	11
0.4	20P4	NF30	5	NF30	5	SC-03	11	SC-03	11
0.75	20P7	NF30	10	NF30	10	SC-03	11	SC-03	11
1.5	21P5	NF30	20	NF30	15	SC-4-0	18	SC-03	11
2.2	22P2	NF30	20	NF30	15	SC-N1	26	SC-4-0	18
3.7	23P7	NF30	30	NF30	20	SC-N2	35	SC-N1	26
5.5	25P5	NF50	50	NF50	40	SC-N2S	50	SC-N2	35
7.5	27P5	NF100	60	NF50	50	SC-N3	65	SC-N2S	50

200V Single-phase Input Series

Motor Capacity kW	VS-606 V7 Model CIMR-V7 \square A		Molded-Case Circuit Breaker (MCCB)			Magnetic Contactor (MC)			
		Without Reactor	With Reactor		Without Reactor		With Reactor		
0.1	B0P1	NF30	Rated Current A	Model	Rated Current A	Model	Rated Current A	Model	Rated Current A
0.2	BOP2	NF30	5	NF30	3	SC-03	11	SC-03	11
0.4	BOP4	NF30	10	NF30	5	NF30	10	SC-03	11
0.75	BOP7	NF30	20	NF30	15	SC-4-0	18	SC-03	11
1.5	B1P5	NF30	30	NF30	30	SC-N2	35	SC-4-0	11
2.2	B2P2	NF30	40	NF30	30	SC-N1	26		
3.7	B3P7	NF50	50	NF50	40	SC-N2	35	SC-N2	35

400V Three-phase Input Series

Motor Capacity kW	VS-606 V7 Model CIMR-V7 \square A \square	Molded-Case Circuit Breaker (MCCB)				Magnetic Contactor (MC)			
		Without Reactor		With Reactor		Without Reactor		With Reactor	
		Model	Rated Current A						
0.2	40P2	NF30	5	NF30	3	SC-03	11	SC-03	11
0.4	40P4	NF30	5	NF30	3	SC-03	11	SC-03	11
0.75	40P7	NF30	5	NF30	5	SC-03	11	SC-03	11
1.5	41P5	NF30	10	NF30	10	SC-03	11	SC-03	11
2.2	42P2	NF30	20	NF30	10	SC-4-0	18	SC-03	11
3.0	43P0	NF30	20	NF30	15	SC-4-0	18	SC-03	11
3.7	43P7	NF30	20	NF30	15	SC-N1	26	SC-4-0	18
5.5	45P5	NF30	30	NF30	20	SC-N2	35	SC-N1	26
7.5	47P5	NF30	30	NF30	30	SC-N2	35	SC-N2	35

Surge Suppressor (Manufactured by NIPPON CHEMI-CON CORPORATION)

Connect surge suppressors to coils in magnetic contactors, control relays, electromagnetic valves, and electromagnetic brakes used as the VS-606 V7 peripheral units.

Coils of Magnetic Contactor and Control Relay			Surge Suppressor					
			Model	Specifications	Code No.			
$\begin{gathered} 200 \mathrm{~V} \\ \text { to } \\ 230 \mathrm{~V} \end{gathered}$	Large-size Magnetic Contactors		DCR2-50A22E	220VAC $0.5 \mu \mathrm{~F}+200 \Omega$	C002417			
	Control Relay		DCR2-10A25C	250VAC $0.1 \mu \mathrm{~F}+100 \Omega$	C002482			
380 to 460V			RFN3AL504KD	$1000 \mathrm{VDC} 0.5 \mu \mathrm{~F}+220 \Omega$	C002630	DCR2-50A22E	DCR2-10A25C	RFN3AL504KD

Isolator

Performance

Allowance	$\pm 0.25 \%$ of output span [Ambient temp : $\left.23^{\circ} \mathrm{C},\left(73.4^{\circ} \mathrm{F}\right)\right]$
Temperature Influence	With $\pm 0.25 \%$ of output span [The value at $\pm 10^{\circ} \mathrm{C}\left(\pm 50^{\circ} \mathrm{F}\right)$ of ambient temp.]
Aux. Power Supply Influence	With $\pm 0.1 \%$ of output span (The value at $\pm 10 \%$ of aux. power supply)
Load Resistance Influence	With $\pm 0.05 \%$ of output span (In the range of load resistance)
Output Ripple	With $\pm 0.5 \% \mathrm{P}-\mathrm{P}$ of output span
Response Time	0.5 sec. or less (Time to settle to $\pm 1 \%$ of final steady value)
Withstand Voltage	2000 VAC for one min. (between each terminal of input, output, power supply and enclosure)
Insulation Resistance	$20 \mathrm{M} \Omega$ and above (by 500 VDC megger) (between each terminal of input, output, power supply and enclosure)

Product Line

Model	Input Signal	Output Signal	Power Supply	Code No.
DGP2-4-4	$0-10 \mathrm{~V}$	$0-10 \mathrm{~V}$	100 VAC	CON 000019.25
DGP2-4-8	$0-10 \mathrm{~V}$	$4-20 \mathrm{~mA}$	100 VAC	CON 000019.26
DGP2-8-4	$4-20 \mathrm{~mA}$	$0-10 \mathrm{~V}$	100 VAC	CON 000019.35
DGP2-3-4	$0-5 \mathrm{~V}$	$0-10 \mathrm{~V}$	100 VAC	CON 000019.15
DGP3-4-4	$0-10 \mathrm{~V}$	$0-10 \mathrm{~V}$	200 VAC	CON 000020.25
DGP3-4-8	$0-10 \mathrm{~V}$	$4-20 \mathrm{~mA}$	200 VAC	CON 000020.26
DGP3-8-4	$4-20 \mathrm{~mA}$	$0-10 \mathrm{~V}$	200 VAC	CON 000020.35
DGP3-3-4	$0-5 \mathrm{~V}$	$0-10 \mathrm{~V}$	200 VAC	CON 000020.15

Dimensions in mm (inches)

Model GP Series

Adjuster's position or PC's varies due to models.

Socket

Connection

View of socket mounted

Cable length

- 4 to 20 mA : Within 100 m
- 0 to 10 V : Within 50 m

DC Reactor（UZDA－B for DC circuit）

When power capacity is significantly greater when compared to inverter capacity，or when the power－ factor needs to be improved，connect the AC or DC reactor．
$A C$ reactor can be used at the same time for harmonic measure．

Connection Example

200V Class

Max．Applicable Motor Output kW（HP）	Current Value A	Inductance mH	Parts Code No．	Fig．No．	Dimensions in mm（inches）										Approx． Mass kg（lb）	$\begin{gathered} \text { Loss } \\ \text { W } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Wire } \\ \text { Size* }^{*} \\ \mathrm{~mm}^{2}\left(\mathrm{in}^{2}\right) \\ \hline \end{array}$
					X	Y_{1}	Y_{2}	Z	B	H	K	G	¢1	¢2			
0.4 （0．5）	5.4	8	X010048	1	85	－	－	53	74	－	－	32	M4	－	0.8	8	2
0.75 （1）				1	(3.35)	－	－	(2.09)	(2.91)	－	－	(1.26)	M4	－	(2.3)	8	(0.0031)
1.5 （2）	18	3	X010049	2													
2.2 （3） 3.7 （5）					（3．39）	36 (1.41)	${ }_{\text {（3．15）}}^{80}$	（2．99）	（2．36）	$\stackrel{55}{\text {（2．17）}}$	18 (0.71)	－	M4	M5	${ }_{\text {（5．6）}}^{2.0}$	18	5 (0.0085)
5.5 （7．5）	36	1	X010050		105		46	93									
7.5 （10）					（4．13）	（3．54）	（1．81）	（3．66）	（2．52）	（3．15）	（1．02）	－	M6	M6	（0．13）	22	（0．0124）

400V Class

Max．Applicable Motor Output kW（HP）	Current Value A	Inductance mH	Parts Code No．	Fig．No．	Dimensions in mm（inches）										$\begin{array}{\|c} \hline \text { Approx. } \\ \text { Mass } \\ \text { kg (lb) } \end{array}$	$\begin{gathered} \text { Loss } \\ \mathrm{W} \end{gathered}$	$\begin{gathered} \text { Wire } \\ \text { Size }^{*} \\ \mathrm{~mm}^{2}\left(\mathrm{in}^{2}\right) \end{gathered}$
					X	Y_{1}	Y_{2}	Z	B	H	K	G	$\phi 1$	¢2			
0.4 （0．5）	3.2	28	X010052	1	85	－	－	53	74	－	－	32	M4	－	0.8	9	2
0.75 （1）	3.2	28	X010052		(3.35)		－	(2.09)	(2.91)		－		M		(2.3)	9	（0．0031）
$\begin{aligned} & 1.5(2) \\ & \hline 2.2(3) \\ & \hline \end{aligned}$	5.7	11	X010053		$\begin{array}{\|c\|} \hline 90 \\ (3.54) \end{array}$	－	－	$\begin{gathered} 60 \\ (2.36) \end{gathered}$	$\begin{array}{c\|} \hline 80 \\ (3.15) \end{array}$	－	－	$\begin{gathered} 32 \\ (1.26) \end{gathered}$	M4	－	$\begin{gathered} 1.0 \\ (2.8) \\ \hline \end{gathered}$	11	$\begin{array}{\|c\|} \hline 2 \\ (0.0031) \end{array}$
3.7 （5）	12	6.3	X010054	2	$\begin{array}{\|c} \hline 86 \\ (3.39) \\ \hline \end{array}$	$\begin{gathered} 36 \\ (1.41) \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ (3.15) \\ \hline \end{gathered}$	$\begin{gathered} 76 \\ (2.99) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 60 \\ (2.36) \\ \hline \end{array}$	$\begin{gathered} 55 \\ (2.17) \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ (0.71) \\ \hline \end{gathered}$	－	M4	M5	$\begin{gathered} \hline 2.0 \\ (5.6) \\ \hline \end{gathered}$	16	$\begin{array}{\|c\|} \hline 2 \\ (0.0031) \\ \hline \end{array}$
$\begin{aligned} & 5.5(7.5) \\ & \hline 7.5(10) \end{aligned}$	23	3.6	X010055		$\begin{gathered} 105 \\ (4.13) \end{gathered}$	$\begin{gathered} 90 \\ (3.54) \end{gathered}$	$\begin{gathered} 46 \\ (1.81) \end{gathered}$	$\begin{gathered} 93 \\ (3.66) \end{gathered}$	$\begin{gathered} 64 \\ (2.52) \end{gathered}$	$\begin{gathered} 80 \\ (3.15) \end{gathered}$	$\begin{gathered} 26 \\ (1.02) \end{gathered}$	－	M6	M5	$\begin{gathered} 3.2 \\ (0.13) \end{gathered}$	27	$\begin{gathered} 5.5 \\ (0.0085) \end{gathered}$

Figure 2
Figure 1
＊ $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ ，IV cable， $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$ ambient temperature，three or less wires connected．

AC Reactor (Model UZBA-B for Input 50/60Hz)

When power capacity is significantly greater when compared to inverter capacity, or when the power-factor needs to be improved, connect the AC or DC reactor. In order to suppress high harmonic wave, DC reactor can be used with AC reactor.

200 V Class (Three-phase Input)

Max. Applicable Motor Output kW (HP)	Current Value A	InductancemH	Parts Code No.	Fig. No.	Dimensions in mm (inches)												Approx. Mass kg (lb)	$\begin{gathered} \text { Loss } \\ \text { W } \end{gathered}$
					A	B	B_{1}	C	D	E	F	H	J	K	L	M		
0.1 (0.13)	2	7.0	x00276	1									M6		$\begin{gathered} 7 \\ (0.28) \end{gathered}$	M4	$\begin{gathered} 2.5 \\ (5.51) \end{gathered}$	15
0.2 (0.25)	2	7.0	0027		120			120		50				0.5				
0.4 (0.5)	2.5	4.2	X002553			(2.80)			(1.57)	(1.97)	(4.13)	(0.79)		(0.41)				
0.75 (1)	5	2.1	X002554															
1.5 (2)	10	1.1	X002489		130	88	-	130	50	70	130	22		11.5			3	25
2.2 (3)	15	0.71	X002490		(5.12)	(3.46)		(5.12)	(1.97)	(2.76)	(5.12)	(0.87)		(0.45)			(6.62)	30
3.7 (5)	20	0.53	X002491	2	130 (5.12)	88 (3.46)	114 (4.49)	105 (4.13)	50 (1.97)	70 (2.76)	130 (5.12)	22 (0.87)	M6	11.5 (0.45)	$7(0.28)$	M5	3 (6.62)	35
5.5 (7.5)	30	0.35	X002492		130 (5.12)	88 (3.46)	119 (4.69)	105 (4.13)	50 (1.97)	70 (2.76)	130 (5.12)	22 (0.87)		$9(0.35)$	7 (0.28)	M5	3 (6.62)	45
7.5 (10)	40	0.265	X002493		130 (5.12)	98 (3.86)	139 (5.47)	105 (4.13)	$50(1.97)$	$80(3.15)$	130 (5.12)	22 (0.87)		$11.50 .45)$	$7(0.28)$	M6	$4(8.82)$	50

400 V Class (Three-phase Input)

Max. Applicable Motor Output kW (HP)	$\begin{array}{\|c} \hline \text { Current } \\ \text { Value } \\ \text { A } \\ \hline \end{array}$	$\begin{gathered} \text { Inductance } \\ \mathrm{mH} \end{gathered}$	Parts Code No.	Fig. No.	Dimensions in mm (inches)												Approx. Mass kg (lb)	$\begin{gathered} \text { Loss } \\ \mathrm{W} \\ \hline \end{gathered}$
					A	B	B_{1}	C	D	E	F	H	J	K	L	M		
0.2 (0.25)				1			-						M6		$\begin{gathered} 7 \\ (0.28) \end{gathered}$	M4		
0.4 (0.5)	1.3	18.0	X002561		$\binom{120}{(4.72)}$	$\begin{gathered} 71 \\ (2.80) \end{gathered}$		$\binom{120}{(4.72)}$	$\begin{gathered} 40 \\ (1.57) \end{gathered}$	$\begin{gathered} 50 \\ (1.97) \end{gathered}$	$\begin{gathered} 1 \\ (4.13) \end{gathered}$	$\begin{gathered} 20 \\ (0.79) \end{gathered}$		$\left.\begin{array}{c} 1 \\ (0.41) \end{array}\right)$			$\begin{gathered} 2.5 \\ (5.51) \end{gathered}$	15
0.75 (1)	2.5	8.4	X002562															
1.5 (2)	5	4.2	X002563					$\begin{gathered} 130 \\ (5.12) \end{gathered}$	$\begin{gathered} 50 \\ (1.97) \end{gathered}$	$\begin{gathered} 70 \\ (2.76) \end{gathered}$	$\begin{gathered} 130 \\ (5.12) \end{gathered}$	$\begin{gathered} 22 \\ (0.87) \end{gathered}$					$\begin{gathered} 3 \\ (6.62) \end{gathered}$	25
2.2 (3)	7.5	3.6	X002564		$\begin{gathered} 130 \\ (5.12) \end{gathered}$	$\left.\begin{array}{c} 88 \\ (3.46) \end{array}\right)$								(0.35)				35
3.7 (5)	10	2.2	X002500											11.5 (0.45)		M5		40
5.5 (7.5)	15	1.42	X002501		130 (5.12)	98 (3.86)	-	130 (5.12)	50 (1.97)	80 (3.15)	130 (5.12)	22 (0.87)		11.5 (0.45)	7 (0.28)	M4	4 (8.82)	50
7.5 (10)	20	1.06	X002502	2	160 (6.30)	$90(3.54)$	115 (4.53	130 (5.12)	75 (2.95)	70 (2.76)	160 (6.30)	25 (0.98)	M6	$10(0.39)$	$7(0.28)$	M5	5(11.02)	50

Figure 1
Figure 2

Zero Phase Reactor

Finemet Zero Phase Reactor to Reduce Radio Noise（Made by Hitachi Metals，Ltd．）

Note：Finemet is a registered trademark of Hitachi Metals，Ltd．

Model F6045GB
200V Three－phase Input Series

Inverter		Finemet Zero Phase Reactor			
Model	Recommended Wire Size mm^{2}	Model	Code No．	Qty．	Recommended Wiring Method
CIMR－V7 \square A20P1	2	F6045GB	FIL001098	1	4 passes through core
CIMR－V7 \square A20P2					
CIMR－V7■A20P4					
CIMR－V7■A20P7					
CIMR－V7■A21P5					
CIMR－V7 \square A22P2	3.5				
CIMR－V7■A23P7	5.5				
CIMR－V7 \square A25P5	8	F11080GB	FIL001097		
CIMR－V7 \square A27P5					

200V Single－phase Input Series

Inverter		Finemet Zero Phase Reactor			
Model	Recommended Wire Size mm^{2}	Model	Code No．	Qty．	Recommended Wiring Method
CIMR－V7 \square AB0P1	2	F6045GB	FIL001098	1	4 passes through core
CIMR－V7 \square AB0P2					
CIMR－V7 \square AB0P4					
CIMR－V7 \square AB0P7	3.5				
CIMR－V7 \square AB1P5					
CIMR－V7 \square AB2P2	5.5				
CIMR－V7 \square AB3P7	8	F11080GB	FIL001097		

400V Three－phase Input Series

Inverter		Finemet Zero Phase Reactor			
Model	Recommended Wire Size mm^{2}	Model	Code No．	Qty．	Recommended Wiring Method
CIMR－V7 \square A40P2	2	F6045GB	FIL001098	1	4 passes through core
CIMR－V7 \square A40P4					
CIMR－V7 \square A40P7					
CIMR－V7 \square A41P5					
CIMR－V7 \square A42P2					
CIMR－V7 \square A43P7					
CIMR－V7 \square A45P5	5.5				
CIMR－V7■A47P7					

Can be used both for input and output sides of the inverter and effective on noise reduction． Pass each wire（R／L1，S／L2，T／L3 or U／T1，V／T2， W／T3）through the core 4 times．

Connection Diagram（Output）

Pass each wire of U／T1 and W／T3 through the core 4 times．

Specifications	$\begin{aligned} & \hline \text { Max. Applicable } \\ & \text { Motor Output } \\ & \text { kW (HP) } \\ & \hline \end{aligned}$	Inverter Capacity kVA	Rated Current A	Model	Product Code	Parts Codes No.	Figure No.	Dimensions in mm (inches)						Mounting Screw	Approx. Mass kg (b)
								W	D	H	A	A'	B		
200 V Class $\binom{$ Single-- }{ phase }	0.1 (0.13) , 0.2 (0.25)	0.3, 0.6	10	LNFB-2102DY	72600-B2102DY	FLL 128	1	120 (4.72)	80 (3.15)	$50(1.97)$	108 (4.25)	-	68 (2.68)	M4×4, 20mm (0.79in.)	0.1 (0.22)
	0.4 (0.5)	1.1	15	LNFB-2152DY	72600-B2152DY	FLL 129	1	120 (4.72)	$80(3.15)$	50 (1.97)	108 (4.25)	-	68 (2.68)	M4×4, 20 mm (0.79in.)	0.2 (0.44)
	0.75 (1)	1.9	20	LNFB-2202DY	72600-B2202DY	FLL 130	1	120 (4.72)	$80(3.15)$	50 (1.97)	108 (4.25)	-	68 (2.68)	M4×4, 20 mm (0.79in.)	0.2 (0.44)
	1.5 (2)	3.0	30	LNFB-2302DY	72600-B2302DY	FLL 131	1	130 (5.12)	$90(3.54)$	65 (2.56)	118 (4.65)	-	78 (3.07)	M $4 \times 4,20 \mathrm{~mm}$ (0.79in.)	0.3 (0.66)
	2.2 (3)	4.2	20×2P	LNFB-2202DY	72600-B2202DY	FLL 130	1	120 (4.72)	$80(3.15)$	$50(1.97)$	108 (4.25)	-	68 (2.68)	M4×4, 20 mm (0.79in.)	0.2 (0.44)
	3.7 (5)	6.7	$30 \times 2 \mathrm{P}$	LNFB-2302DY	72600-B2302DY	FLL 131	1	130 (5.12)	$90(3.54)$	65 (2.56)	118 (4.65)	-	78 (3.07)	M4×4, 20 mm (0.79in.)	0.3 (0.66)
200 V Class $\binom{$ Three-- }{ phase }	0.1 (0.13) to 0.75 (1)	0.3 to 1.9	10	LNFD-2103DY	72600-D2103DY	FLL 132	2	120 (4.72)	80 (3.15)	55 (2.17)	108 (4.25)	-	68 (2.68)	M4×4, 20mm (0.79in.)	0.2 (0.44)
	1.5 (2)	3.0	15	LNFD-2153DY	72600-D2153DY	FLL 133	2	120 (4.72)	80 (3.15)	55 (2.17)	108 (4.25)	-	68 (2.68)	M4×4, 20 mm (0.79in.)	0.2 (0.44)
	2.2 (3)	4.2	20	LNFD-2203DY	72600-D2203DY	FLL 134	2	170 (6.69)	$90(3.54)$	70 (2.76)	158 (6.22)	-	78 (3.07)	M4×4, 20 mm (0.79in.)	0.4 (0.88)
	3.7 (5)	6.7	30	LNFD-2303DY	72600-D2303DY	FLL 135	3	170 (6.69)	110 (4.33)	70 (2.76)	-	79 (3.11)	$98(3.86)$	M4×6, 20 mm ((0.79in.)	0.5 (1.10)
	5.5 (7.5)	9.5	20×2P	LNFD-2203DY	72600-D2203DY	FLL 134	2	170 (6.69)	$90(3.54)$	70 (2.76)	158 (6.22)	-	78 (3.07)	M4×4, 20 mm (0.79in.)	0.4 (0.88)
	7.5 (10)	13	$30 \times 2 \mathrm{P}$	LNFD-2303DY	72600-D2303DY	FLL 135	3	170 (6.69)	110 (4.33)	70 (2.76)	-	79 (3.11)	98 (3.86)	M4×6, 20 mm (0.79in.)	0.5 (1.10)
	$0.2(0.25)$ to 0.75 (1)	0.9 to 2.6	5	LNFD-4033DY	72600-D4053DY	FLL 144	3	170 (6.69)	130 (5.12)	75 (2.95)	-	79 (3.11)	118 (4.65)	M $4 \times 6,30 \mathrm{~mm}$ (1.18in.)	0.3 (0.66)
	1.5 (2), 2.2 (3)	3.7 to 4.2	10	LNFD-4103DY	72600-D4103DY	FLL 145	3	170 (6.69)	130 (5.12)	95 (3.94)	-	79 (3.11)	118 (4.65)	M4×6, 30mm (1.18in.)	0.4 (0.88)
	3.0 (2.2), 3.7 (5)	5.5 to 7.0	15	LNFD-4503DY	72600-D4153DY	FLL 146	3	170 (6.69)	130 (5.12)	95 (3.94)	-	79 (3.11)	118 (4.65)	M $4 \times 6,30 \mathrm{~mm}$ (1.18in.)	0.4 (0.88)
	5.5 (7.5)	11	20	LNFD-4203DY	72600-D2203DY	FLL 147	3	200 (7.87)	145 (5.71)	100 (3.94)	-	$94(3.70)$	133 (5.24)	M4×6, 30mm (1.18in.)	0.5 (1.10)
	7.5 (10)	14	30	LNFD-4303DY	72600-D2303DY	FLL 148	3	200 (7.87)	145 (5.71)	100 (3.94)	-	94 (3.70)	133(5.24)	M $4 \times 6,30 \mathrm{~mm}$ (1.18in.)	0.6 (1.32)

Note: " 2 P " in the column for the rated current indicates that the two noise filters on the input-terminal side are connected in parallel.

Figure 1

Figure 2

Figure 3

Noise Filter with Case

Specifications	$\begin{gathered} \hline \text { Max. Applicable } \\ \text { Motor Output } \\ \text { kW (HP) } \\ \hline \end{gathered}$	Inverter Capacity kVA	Rated Current A	Model	Product Code	Parts Codes No.	Dimensions in mm (inches)						Mounting Screw	Approx. Mass kg (b)
							W	D	H	A	B	C		
	0.1 (0.13), 0.2 (0.25)	0.3, 0.6	10	LNFB-2102HY	72600-B2102HY	FLL 136	185 (7.28)	95 (3.74)	85 (3.35)	155 (6.10)	65 (2.56)	33 (1.30)	M4×4, 10mm (0.39in.)	0.8 (1.77)
	0.4 (0.5)	1.1	15	LNFB-2152HY	72600-B2152HY	FLL 137	185 (7.28)	95 (3.74)	85 (3.35)	155 (6.10)	65 (2.56)	33 (1.30)	M $4 \times 4,10 \mathrm{~mm}$ (0.39in.)	0.8 (1.77)
	0.75 (1)	1.9	20	LNFB-2202HY	72600-B2202HY	FLL 138	185 (7.28)	95 (3.74)	85 (3.35)	155 (6.10)	65 (2.56)	33 (1.30)	M4×4, 10mm (0.39in.)	0.9 (1.99)
	1.5 (2)	3.0	30	LNFB-2302HY	$72600-\mathrm{B} 2302 \mathrm{HY}$	FLL 139	200 (7.87)	105 (4.13)	95 (3.74)	170 (6.69)	75 (2.95)	33 (1.30)	M $4 \times 4,10 \mathrm{~mm}$ (0.39in.)	1.1 (2.43)
	2.2 (3)	4.2	20×2P	LNFB-2202HY	72600-B2202HY	FLL 138	185 (7.28)	95 (3.74)	85 (3.35)	155 (6.10)	65 (2.56)	33 (1.30)	M $4 \times 4,10 \mathrm{~mm}$ (0.39in.)	0.9 (1.99)
	3.7 (5)	6.7	$30 \times 2 \mathrm{P}$	LNFB-2302HY	72600-B2302HY	FLL 139	200 (7.87)	105 (4.13)	95 (3.74)	170 (6.69)	75 (2.95)	33 (1.30)	M $4 \times 4,10 \mathrm{~mm}$ (0.39in.)	1.1 (2.43)
	0.1 (0.13) to 0.75 (1)	0.3 to 1.9	10	LNFD-2103HY	72600-D2103HY	FLL 140	185 (7.28)	95 (3.74)	85 (3.35)	155 (6.10)	65 (2.56)	33 (1.30)	M4×4, 10mm (0.39in.)	0.9 (1.99)
	1.5 (2)	3.0	15	LNFD-2153HY	72600-D2153HY	FLL 141	185 (7.28)	95 (3.74)	85 (3.35)	155 (6.10)	65 (2.56)	33 (1.30)	M $4 \times 4,10 \mathrm{~mm}$ (0.39in.)	0.9 (1.99)
	2.2 (3)	4.2	20	LNFD-2203HY	72600-D2203HY	FLL 142	240 (9.45)	125 (4.92)	100 (3.94)	210 (8.27)	$95(3.74)$	33 (1.30)	M4×4, 10mm (0.39in.)	1.5 (3.31)
	3.7 (5)	6.7	30	LNFD-2303HY	72600-D2303HY	FLL 143	240 (9.45)	125 (4.92)	100 (3.94)	210 (8.27)	95 (3.74)	33 (1.30)	M4×4, 10mm (0.39in.)	1.6 (3.53)
	5.5 (7.5)	9.5	$20 \times 2 \mathrm{P}$	LNFD-2203HY	72600-D2203HY	FLL 142	240 (9.45)	125 (4.92)	100 (3.94)	210 (8.27)	95 (3.74)	33 (1.30)	M4×4, 10mm (0.39in.)	1.5 (3.31)
	7.5(10)	13	$30 \times 2 \mathrm{P}$	LNFD-2303HY	72600-D2303HY	FLL 143	240 (9.45)	125 (4.92)	100 (3.94)	210 (8.27)	95 (3.74)	33 (1.30)	M4×4, 10mm (0.39in.)	1.6 (3.53)
	0.2 (0.25) to 0.75 (1)	0.9 to 2.6	5	LNFD-4053HY	72600-D4053HY	FLL 149	235 (9.25)	140 (5.51)	120 (4.72)	205 (8.07)	110 (4.33)	43 (1.69)	M4×4, 10mm (0.39in.)	1.6 (3.53)
	1.5 (2), 2.2 (3)	3.7 to 4.2	10	LNFD-4103HY	72600-D4103HY	FLL 150	235 (9.25)	140 (5.51)	120 (4.72)	205 (8.07)	110 (4.33)	43 (1.69)	M4×4, 10 mm (0.39in.)	1.7 (3.75)
	3.0 (2.2), 3.7 (5)	5.5 to 7.0	15	LNFD-4153HY	72600-D4153HY	FLL 151	235 (9.25)	140 (5.51)	120 (4.72)	205 (8.07)	110 (4.33)	43 (1.69)	M $4 \times 4,10 \mathrm{~mm}$ (0.39in.)	1.7 (3.75)
	5.5 (7.5)	11	20	LNFD-4203HY	72600-D4203HY	FLL 152	270 (10.63)	155 (6.10)	125 (4.92)	240 (9.45)	125 (4.92)	43 (1.69)	M4 $4 \times 4,10 \mathrm{~mm}$ (0.39in.)	2.2(4.85)
	7.5(10)	14	30	LNFD-4303HY	72600-D4303HY	FLL 153	270 (10.63)	155 (6.10)	125 (4.92)	240 (9.45)	125 (4.92)	43 (1.69)	M $4 \times 4,10 \mathrm{~mm}$ (0.39in.)	2.2(4.85)

Note: " 2 P " in the column for the rated current indicates that the two noise filters on the input-terminal side are connected in parallel.

Output Noise Filter
(Tohoku Metal Industries Co., Ltd.)

Dimensions

Digital Operator for Remote Operation (Model JVOP-146/144)

Note: Order digital operator, cable, and blank cover separately.

Specifications

	Max. Applicable Motor Output kW (HP)	Inverter Capacity kVA	Model	Rated Current A	$\begin{aligned} & \text { Part Code } \\ & \text { No. } \end{aligned}$
200 V class Threephase	0.1 (0.13)	0.3	LF-310KA	10	FIL 000068
	0.2 (0.25)	0.6	LF-310KA	10	FIL 000068
	0.4 (0.5)	1.1	LF-310KA	10	FIL 000068
	0.75 (1)	1.9	LF-310KA	10	FIL 000068
	1.5 (2)	3.0	LF-310KA	10	FIL 000068
	2.2 (3)	4.2	LF-320KA	20	FIL 000069
	3.7 (5)	6.7	LF-320KA	20	FIL 000069
	5.5 (7.5), 7.5 (10)	9.5, 13	LF-350KA	50	FIL 000070
400V class Threephase	0.2 (0.25), 0.4 (0.5)	0.9, 1.4	LF-310KB	10	FIL 000071
	0.75 (1)	2.6	LF-310KB	10	FIL 000071
	1.5 (2)	3.7	LF-310KB	10	FIL 000071
	2.2 (3)	4.2	LF-310KB	10	FIL 000071
	3.0 (2.2), 3.7 (5)	5.5, 7.0	LF-310KB	10	FIL 000071
	5.5 (7.5), 7.5 (10)	11, 14	LF-320KB	20	FIL 000072

Model	TerminalPlate	Dimensions in mm (inches)								Approx. Mass kg (b)
		A	B	C	D	E	F	G	H	
LF-310KA	TE-K5.5M4	140 (5.51)	100 (3.94)	100 (3.94)	$90(3.54)$	70 (2.76)	45 (1.77)	7×4.5.(0.18) dia.	$\begin{aligned} & 4.5(0.18) \\ & \text { dia. } \end{aligned}$	0.5 (1.10)
LF-320KA	TE-K5.5M4	140 (5.51)	100 (3.94)	100 (3.94)	$90(3.54)$	70 (2.76)	45 (1.77)	7×4.5 (0.18) dia.	$\begin{gathered} 4.5(0.18) \\ \text { dia. } \end{gathered}$	0.6 (1.32)
LF-350KA	TE-K22M6	260 (10.24)	180 (7.09)	180 (7.09)	160 (6.30)	120 (4.72)	65 (2.56)	7×4.5 (0.18) dia.	$\begin{aligned} & 4.5(0.18) \\ & \text { dia. } \end{aligned}$	2.0 (4.41)
LF-310KB	TE-K5.5M4	$140(5.51)$	100 (3.94)	100 (3.94)	$90(3.54)$	70 (2.76)	45 (1.77)	7×4.5 (0.18) dia.	$\begin{aligned} & 4.5(0.18) \\ & \text { dia. } \end{aligned}$	0.5 (1.00)
LF-320KB	TE-K5.5M4	140 (5.51)	$100(3.94)$	100 (3.94)	$90(3.54)$	70 (2.76)	45 (1.77)	7×4.5 (0.18) dia.	$\begin{gathered} 4.5(0.18) \\ \text { dia. } \end{gathered}$	0.6 (1.32)

Attachment for Mounting Digital Operator on Panel (EZZ08386A)
An attachment is available to use the digital operator JVOP-140 (with analog volume) or JVOP-147 (without analog volume) on control panel. For details, contact your YASKAWA representative.
Analog Input Cable (WV201)
If using the CN2 terminal on the back of the digital operator, an analog input cable (cable length:1m) is available for the housing.

PC Communications Support Tool Cable

PC	Inverter
Varispeed G7/ F7 VS-606 V7/J7	
IBM-compatible computer (DOS/V) (DSUB9P)	WV103 (Cable length: 3m)

Dimensions in mm (inches) (Model: JVOP-146)

(Model: JVOP-144)

Braking Resistor, Braking Resistor Unit (Standard Specifications for 200-V and 400-V Classes)

Voltage	Max. Applicable Motor Output kW (HP)	Inverter Model CIMR-V7 C_{\square}^{-}		Braking Resistor				Braking Torque (3\% ED) \%	Overload Relay		Braking Resistor Unit (Overload Relay Built-in)			$\begin{gathered} \text { Braking } \\ \text { Torque } \\ (10 \% \text { ED) } \\ \text { \% } \end{gathered}$	Connectable Min. Resistance Ω
				Model ERF150WJ	Resistance Ω	Parts Code No.	No. of Used		Model	Setting Current A					
				Model LKEB-							Resistor Spec. (Per One Unit) W $\quad \Omega$	No. of Used			
		Three-phase	Single-phase												
$\begin{gathered} 200 \mathrm{~V} \\ \left(\begin{array}{l} \text { Single-/ } \\ \text { Three- } \\ \text { phase } \end{array}\right) \end{gathered}$	0.1 (0.13)	20P1	B0P1	401	400	R007507	1	220	RH-13/0.15P	0.16	-	-	-	-	300
	0.2 (0.25)	20P2	B0P2	401	400	R007507	1	220	RH-13/0.3P	0.22	-	-	-	-	300
	0.4 (0.5)	20P4	B0P4	201	200	R007505	1	220	RH-13/0.5P	0.44	20P7	70200	1	220	200
	0.75 (1)	20P7	B0P7	201	200	R007505	1	125	RH-13/0.5P	0.46	20P7	70200	1	125	120
	1.5 (2)	21 P 5	B1P7	101	100	R007504	1	125	RH-13/0.8P	0.91	21P5	260100	1	125	60
	2.2 (3)	22P2	B2P2	700	70	R007503	1	120	RH-13/1.2P	1.1	22P2	$260 \quad 70$	1	120	60
	3.7 (5)	23P7	B3P7	620	62	R007510	1	100	RH-13/1.4P	1.4	23P7	39040	1	125	32
	5.5 (7.5)	25P5	-	-	-	-	-	-	-	-	25P5	52030	1	115	9.6
	7.5 (10)	27P5	-	-	-	-	-	-	-	-	27P5	$780 \quad 20$	1	125	9.6
400V(Three-phase)	0.2 (0.25)	40P2	-	751	750	R007508	1	230	RH-13/0.15P	0.17	-	-	-	-	750
	0.4 (0.5)	40P4	-	751	750	R007508	1	230	RH-13/0.3P	0.24	40P7	70750	1	230	750
	0.75 (1)	40P7	-	751	750	R007508	1	130	RH-13/0.3P	0.24	40P7	70750	1	130	510
	1.5 (2)	41P5	-	401	400	R007507	1	125	RH-13/0.5P	0.46	41P5	260400	1	125	240
	2.2 (3)	42P2	-	301	300	R007506	1	115	RH-13/0.5P	0.61	42P2	$260 \quad 250$	1	135	200
	3.0 (4)	43 P 0	-	401	400	R007507	2	105	RH-13/0.8P	0.93	43P7	390150	1	135	100
	3.7 (5)	43P7	-												
	5.5 (7.5)	45P5	-	-	-	-	-	-	-	-	45P5	$520 \quad 100$	1	135	32
	7.5 (10)	47P5	-	-	-	-	-	-	-	-	47P5	$780 \quad 75$	1	130	32

Braking Resistor Unit [Dimensions in mm (inches)]

Braking Resistor

[Dimensions in mm (inches)]

Braking Resistor
Model : ERF-150WJ

Connections

Frequency Meter／Ammeter

MODEL DCF－6A＊，3V，1mA ：Analog frequency indicating meter is available as an option．

Scale parts code no．
75 Hz full scale：FM000065 $60 / 120 \mathrm{~Hz}$ full scale：FM000085
＊：DCF－6A is $3 \mathrm{~V}, 1 \mathrm{~mA}, 3 \mathrm{k} \Omega$ ．
For VS－606V7 multi－function analog monitor output，set frequency meter adjusting potentiometer or constant n067（analog monitor output gain） within the range of 0 to 3 V （Initial set－ ting is 0 to 10 V ）．

Frequency Setting Potentiometer

MODEL RV30YN 20S，2k ：Adjusts motor frequency through use of frequency setting （Parts code no．：RH000739）knob located over the potentiometer．

Frequency Meter Adjusting Potentiometer

MODEL RV30YN 20S，2k Ω ：Corrects frequency meter reading．
（Parts code no．：RH000850）

Frequency Setting
Knob（Model CM－3S）
Used to adjust potentiometer frequency setting．

Potentiometer Drawing for Frequency Meter Adjustment and Frequency Setting

Scale Plate
（Parts code no．：NPJT41561－1）

Communication Interface Unit

Dimensions in mm
Note: Optional communication units are shown as attached in drawings.

Voltage Class	Max. Applicable Motor Output kW	Inverter Model CIMR-V7A*	DWG	Open-chassis Type (IP00) in mm						Approx. Mass kg
				W	H	D	W1	H1	H2	
200V Class (Threephase)	0.1	20P1	1	68	128	114	56	118	5	1.1
	0.2	20P2								
	0.4	20P4				146				1.4
	0.75	20P7				166				1.6
	1.5	21P5	2	108		169	96			1.9
	2.2	22P2				178				2.0
	3.7	23P7		140		181	128			2.6
	5.5	25P5	3	180	260	208	164	244	8	5.1
	7.5	27P5								5.3
200V Class (Singlephase)	0.1	B0P1	1	68	128	114	56	118	5	1.1
	0.2	B0P2				114				1.2
	0.4	B0P4				169				1.5
	0.75	B0P7	2	108		178	96			2.0
	1.5	B1P5				194				
	2.2	B2P2		140		201	128			2.7
	3.7	B3P7		170		218	158			3.4
400V Class (Threephase)	0.2	40P2	2	108	128	130	96	118	5	1.5
	0.4	40P4				148				1.6
	0.75	40P7				178				
	1.5	41P5				194				2.0
	2.2	42P2								
	3.0	43P0		140		181	128			2.6
	3.7	43P7								
	5.5	45P5	3	180	260	208	164	244	8	5.3
	7.5	47P5								

[^6]Connection Diagrams
MECHATROLINK communications SI-T/V7

Note: Models of 3.7 kW or lower are currently available for MECHATROLINK communications. Requires the exclusive software for the SI-T/V7 installed in the inverter.

Profibus-DP communications SI-P1/V7

CC-Link communications

SI-C/V7

Varispeed V7 with Communications Support

Connection Diagram with Digital Operator

Dimensions in mm

Drawing 1

Voltage Class	Max. Applicable Motor Output kW	Inverter Model CIMR-V7A*1A	DWG	Open-chassis Type (IPOO) in mm							Approx. Mass kg
				W	H	D	W1	H1	H2	d	
200V Class (Threephase)	0.1	20P1	1	68	128	91	56	118	5	M4	0.6
	0.2	20P2				91					
	0.4	20P4				123					0.9
	0.75	20P7				143					1.1
	1.5	21P5	2	108		146	96				1.4
	2.2	22P2				155					1.5
	3.7	23P7		140		158	128				2.1
	5.5 *2	25P5		180	260	185	164	244	8	M5	4.6
	$7.5^{* 2}$	27P5									4.8
200V Class (Singlephase)	0.1	B0P1	1	68	128	91	56	118	5	M4	0.6
	0.2	B0P2				91					0.7
	0.4	B0P4				146					1.0
	0.75	B0P7	2	108		155	96				1.5
	1.5	B1P5				171					
	2.2	B2P2		140		178	128				2.2
	3.7	B3P7		170		195	158				2.9
400V Class (Threephase)	0.2	40P2	2	108	128	107	96	118	5	M4	1.0
	0.4	40P4				125					1.1
	0.75	40P7				155					1.5
	1.5	41P5				171					
	3.0	43P0		140							
	3.7	43P7				158	128				2.1
	$5.5^{* 2}$	45P5		180	260	185	164	244	8	M5	4.8
	$7.5{ }^{* 2}$	47P5				185	164	24	8	N5	4.8

[^7]
Attachment

Attachment for Mounting External Cooling-fan
When mounting an external cooling-fan to the VS-606V7, this attachment is required.

Note: Cannot be mounted with NEMA1 kit.
The protective structure is open chassis type.

* Volume depth
(Fig. 1 Example of 200 V 0.1 kW model)

VS-606V7	Attachment Order Code	Dimensions in mm		
		D1	D2	D3
CIMR-V7AA20P1 CIMR-V7AA20P2	EZZ08136A	69.2	12	30
CIMR-V7AA20P4	EZZ08136B	69.2	42	50
CIMR-V7AA20P7	EZZ08136C	69.2	62	70
CIMR-V7AA21P5	EZZ08136D	73	58	70
CIMR-V7AA22P2		98	58	70
CIMR-V7AA23P7	EZZ08136F	78.6	64.4	70
CIMR-V7AA25P5 CIMR-V7AA27P5	EZZ08136H	113.8	56.2	60
CIMR-V7AABOP1 CIMR-V7AABOP2	EZZ08136A	69.2	12	30
CIMR-V7AAB0P4	EZZ08136B	92.2	42	50
CIMR-V7AAB0P7	EZZ08136D	82	58	70
CIMR-V7AAB1P5		98	58	70
CIMR-V7AAB2P2	EZZ08136F	98.6	64.4	70
CIMR-V7AAB3P7	EZZ08136G	115.6	64.4	70
CIMR-V7AA40P2	EZZ08136E	82	13.2	30
CIMR-V7AA40P4	EZZ08136D	82	28	40
CIMR-V7AA40P7		82	58	70
CIMR-V7AA41P5 CIMR-V7AA42P2		98	58	70
CIMR-V7AA43P0 CIMR-V7AA43P7	EZZ08136F	78.6	64.4	70
$\begin{aligned} & \text { CIMR-V7AA45P5 } \\ & \text { CIMR-V7AA47P5 } \\ & \hline \end{aligned}$	EZZ08136H	113.8	56.2	60

- Attachment for Replacing PC3 Series (Normal Mounting) - When replacing the VS-606PC3 with a VS-606V7, this attachment is required.
$\cdot 7.5 \mathrm{~mm}(0.30 \mathrm{in})$ is added to dimension D of the standard VS-606V7 for the attachment.

Attachment for Replacing PC3 Series (Mounting External Cooling-fan)

- When replacing the external cooling-fan type VS-606PC3, this attachment is required to fit the panel cutout.
- Dimension D is changed as Fig. 2.
- The protective structure is open chassis type.

VS-606PC3 Model	VS-606V7 Model	Attachment Order Code
CIMR-PC $\square 20 \mathrm{P} 1$	CIMR-V7A■20P1	EZZ08114A
CIMR-PC $\square 20 \mathrm{P} 2$	CIMR-V7A $\square 20 \mathrm{P} 2$	
CIMR-PC $\square 20 \mathrm{P} 4$	CIMR-V7A $\square 20 \mathrm{P} 4$	
CIMR-PC $\square 20 \mathrm{P} 7$	CIMR-V7A $\square 20 \mathrm{P} 7$	EZZ08114B
CIMR-PC $\square 21 \mathrm{P} 5$	CIMR-V7A $\square 21 \mathrm{P} 5$	
CIMR-PC $\square 22 \mathrm{P} 2$	CIMR-V7A $\square 22 \mathrm{P} 2$	EZZ08114C
CIMR-PC $\square 23 \mathrm{P} 7$	CIMR-V7A $\square 23 \mathrm{P} 7$	EZZ08114D
CIMR-PC \square B0P1	CIMR-V7A \square B0P1	EZZ08114B
CIMR-PC \square BOP2	CIMR-V7A \square B0P2	
CIMR-PC \square B0P4	CIMR-V7A \square B0P4	
CIMR-PC \square BOP7	CIMR-V7A \square B0P7	EZZ08114C
CIMR-PC \square B1P5	CIMR-V7A \square B1P5	
CIMR-PC \square B2P2	CIMR-V7A \square B2P2	
CIMR-PC \square B3P7	CIMR-V7A \square B3P7	EZZ08114E
CIMR-PC $\square 40 \mathrm{P} 2$	CIMR-V7A $\square 40 \mathrm{P} 2$	EZZ08114C
CIMR-PC $\square 40 \mathrm{P} 4$	CIMR-V7A $\square 40 \mathrm{P} 4$	
CIMR-PC $\square 40 \mathrm{P} 7$	CIMR-V7A $\square 40 \mathrm{P} 7$	
CIMR-PC $\square 41 \mathrm{P} 5$	CIMR-V7A $\square 41 \mathrm{P} 5$	
CIMR-PC $\square 42 \mathrm{P} 2$	CIMR-V7A $\square 42 \mathrm{P} 2$	
CIMR-PC $\square 43 \mathrm{P} 7$	CIMR-V7A $\square 43 \mathrm{P} 7$	

| VS-606PC3 Model | VS-606V7 Model | Attachment |
| :--- | :--- | :--- | :---: | :---: | :---: |
| | | |

Region	Service Area	Service Location	Service Agency	Telephone/Fax
North America	U.S.A	Chicago(HQ) Los Angeles New Jersey Boston San Francisco, Ohio North Carolina	(1) YASKAWA ELECTRIC AMERICA INC.	$\begin{aligned} & \text { Headquarters } \\ & \stackrel{\rightharpoonup}{\mathbf{s}}+1-847-887-7303 \\ & \text { FAX }+1-847-887-7070 \end{aligned}$
	Mexico	Mexico City	(2) PILLAR MEXICANA. S.A. DE C.V.	$\begin{array}{ll} \hline \mathbf{8} & +52-5593-28-69 \\ \text { FAX } & +52-5651-55-73 \end{array}$
South America	South America	Sao Pãulo	(3) YASKAWA ELÉCTRICO DO BRASIL COMÉRCIO LTD.A.	$\begin{array}{ll} \mathbf{8} & +55-11-5071-2552 \\ \text { FAX } & +55-11-5581-8795 \\ \hline \end{array}$
	Colombia	Santafe De Bogota	(4) VARIADORES LTD. A.	$\begin{array}{ll} \mathbf{8} & +57-91-635-7460 \\ \text { FAX } & +57-91-611-3872 \\ \hline \end{array}$
Europe	All of Europe and South Africa	Frankfurt	© 5 YASKAWA Electric EUROPE GmbH	Headquarters $\begin{array}{ll} \text { 玉 } & +49-6196-569-300 \\ \text { FAX } & +49-6196-569-398 \end{array}$
Asia	South Korea	Seoul	(6) YASKAWA ELECTRIC KOREA Co.	$\begin{array}{ll} \mathbf{8} & +82-2-784-7844 \\ \text { FAX } & +82-2-784-8495 \end{array}$
			(1) YASKAWA ENGINEERING KOREA Co.	$\begin{array}{ll} \mathbf{s} & +82-2-3775-0337 \\ \text { FAX } & +82-2-3775-0338 \\ \hline \end{array}$
			(8) SAMSUNG Electronics Co.,Ltd.	$\begin{array}{ll} \hline \mathbf{r} & +82-331-200-2981 \\ \text { FAX } & +82-331-200-2970 \\ \hline \end{array}$
	China	Beijing, Guangzhou, Shanghai	(0) YASKAWA ELECTRIC (SHANGHAI) Co., Ltd.	$\begin{array}{ll} \mathbf{8} & +86-21-5385-2200 \\ \text { FAX } & +86-21-5385-3299 \end{array}$
			(1) Shanghai Yaskawa-Tongji M\&E Co.,Ltd.	$\begin{array}{ll} \mathbf{8} & +86-21-6553-6060 \\ \text { FAX } \\ +86-21-5588-1190 \end{array}$
	Taiwan	Taipei	(1) YASKAWA ELECTRIC TAIWAN Co.	$\begin{array}{ll} \mathbf{8} & +886-2-2502-5003 \\ \text { FAX } & +886-2-2505-1280 \\ \hline \end{array}$
	Singapore	Singapore	(12) YASKAWA ELECTRIC (SINGAPORE) Pte. Ltd.	$\begin{array}{ll} \mathbf{s} & +65-6282-3003 \\ \text { FAX } & +65-6289-3003 \end{array}$
			(B) YASKAWA ENGINEERING ASIA-PACIFIC Pte. Ltd.	$\begin{array}{ll} \mathbf{R} & +65-6282-1601 \\ \text { FAX } & +65-6282-3668 \end{array}$
	Thailand	Bangkok	(44) YASKAWA ELECTRIC (THAILAND) Co.,Ltd.	$\begin{array}{ll} \hline \mathbf{8} & +66-2-693-2200 \\ \text { FAX } & +66-2-693-2204 \\ \hline \end{array}$
	India	Mumbai	(15) LARSEN \& TOUBRO LIMITED	$\begin{aligned} & \text { Headquarters } \\ & \boldsymbol{\pi}+91-22-7683511(662) \\ & \text { FAX }+91-22-7683525 \end{aligned}$
Oceania	Australia	Sydney(HQ) Melbourne	(10) ROBOTIC AUTOMATION Pty. Ltd.	$\begin{aligned} & \text { Headquarters } \\ & \mathbf{\sim}+61-9748-3788 \\ & \mathbf{F A X}+61-2-9748-3817 \end{aligned}$

VARISPEED-606V7

IRUMA BUSINESS CENTER (SOLUTION CENTER)

480, Kamifujisawa, Iruma, Saitama 358-8555, Japan
Phone 81-4-2962-5696 Fax 81-4-2962-6138
YASKAWA ELECTRIC AMERICA, INC.
2121 Norman Drive South, Waukegan, IL 60085, U.S.A.
Phone 1-847-887-7000 Fax 1-847-887-7370
YASKAWA ELÉTRICO DO BRASIL COMÉRCIO LTD.A.
Avenida Fagundes Filho, 620 Bairro Saude-Sao Pãulo-SP, Brazil CEP: 04304-000
Phone 55-11-5071-2552 Fax 55-11-5581-8795
YASKAWA ELECTRIC EUROPE GmbH
Am Kronberger Hang 2, 65824 Schwalbach, Germany
Phone 49-6196-569-300 Fax 49-6196-569-312
YASKAWA ELECTRIC UK LTD.
1 Hunt Hill Orchardton Woods Cumbernauld, G68 9LF, United Kingdom
Phone 44-1236-735000 Fax 44-1236-458182
YASKAWA ELECTRIC KOREA CORPORATION
7F, Doore Bldg. 24, Yeoido-dong, Youngdungpo-Ku, Seoul 150-877, Korea
Phone 82-2-784-7844 Fax 82-2-784-8495
YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.
151 Lorong Chuan, \#04-01, New Tech Park 556741, Singapore
Phone 65-6282-3003 Fax 65-6289-3003
YASKAWA ELECTRIC (SHANGHAI) CO., LTD.
No. 18 Xizang Zhong Road. Room 1702-1707, Harbour Ring Plaza Shanghai 200001, China
Phone 86-21-5385-2200 Fax 86-21-5385-3299
YASKAWA ELECTRIC (SHANGHAI) CO., LTD. BEIJING OFFICE
Room 1011A, Tower W3 Oriental Plaza, No. 1 East Chang An Ave.,
Dong Cheng District, Beijing 100738, China
Phone 86-10-8518-4086 Fax 86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION

9F, 16, Nanking E. Rd., Sec. 3, Taipei, Taiwan
Phone 886-2-2502-5003 Fax 886-2-2505-1280

YASKAWA ELECTRIC CORPORATION

YASKAWA

In the event that the end user of this product is to be the military and said product is to be

[^0]: * DeviceNet is a registered trademark of Open DeviceNet Vendors Association.

[^1]: *1 Single-phase series inverter output is three-phase (for three-phase motors).
 Single-phase motor cannot be applied.
 *2 Based on a standard 4-pole motor for max. applicable motor output. Select the inverter model within the allowable motor rated current.
 *3 Rated input current depends on the power-source impedance including the power transformer, the input reactor, and wires.
 *4 Shows deceleration torque for uncoupled motor decelerating from 60 Hz with the shortest possible deceleration time.
 *5 The ground fault here is one which occurs in the motor wiring while the motor is running.
 A ground fault may not be detected in the following cases.

 - A ground fault with low resistance which occurs in motor cables or terminals
 - A ground fault occurs when the power is turned ON.
 *6 The operation level becomes approx. 50% of inverter rated output current in case of inverters of 5.5 kW or 7.5 kW .

[^2]: * Factory setting values are different according to inverter capacity.

[^3]: *1 Energy-saving control can be used in the V/f control mode
 *2 The factory setting value is different according to inverter capacity.

[^4]: * Initialization resets the value to factory setting

[^5]: -

[^6]: Note: Optional communication units are included in the dimensions of the enclosed NEMA1 inverters of 5.5 kW and 7.5 kW .

[^7]: 1: Model differs if a digital operator is used or not and with the type of communications.
 *2 : No models currently available for CC-Link.
 Note : If using an open-chassis inverter of 5.5 kW or 7.5 kW in the 200 V or 400 V class, remove the top and the bottom covers.

